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Preface

This book presents a systematic treatment of theoretical methods and computation
schemes for solving problems in dynamics and control. The mathematical models
investigated here are motivated by processes that emerge in many applied areas. The
book is aimed at graduate students, researchers, and practitioners in control theory
with applications and computational realizations.

The emphasis is on issues of reachability, feedback control synthesis under
complex state constraints, hard or double bounds on controls, and performance in
finite continuous time. Also given is a concise description of problems in guaranteed
state estimation, output feedback control, and hybrid dynamics using methods of
this book. Although its focus is on systems with linear structure, the text also
indicates how the suggested approaches apply to systems with nonlinearity and
nonconvexity.

Of primary concern is the problem of system reachability, complemented by the
problem of solvability, within a given class of controls. This leads to two basic
questions: find the terminal states that the system can reach from a given initial state
within a specified time, using all possible controls, and find the initial states from
which the system can reach a given terminal (“target”) set in specified time, using
all possible controls. The answer to these questions takes the form of bundles of
controlled trajectories—the reachability tubes—that emanate either forward in time
from a given starting set (the forward reachability tube) or backward in time from a
given target set (the solvability or backward reachability tube). The cross-sections
(“cuts”) of these tubes are the reachability (“reach”) sets. Backward reach sets are
important in designing feedback (closed-loop) controls.

We are thus led to dealing with trajectory tubes—set-valued functions that are
the main elements of the required solutions. These tubes are also key in describ-
ing systems operating under uncertainty, in the form of unknown but bounded
parameters in the system model, inputs, and measurement errors. The mathematical
properties of the solutions, such as non-differentiability, may also lead to set-valued
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functions. Hence we have to conduct the investigation of feedback control system
dynamics taking into account the set-valued nature of the functions involved. This
is achieved using the Hamilton–Jacobi formalism in conjunction with the Dynamic
Programming approach and studying value functions for appropriate problems of
dynamic optimization. These value functions turn out to be the solutions to related
types of the HJB (Hamilton–Jacobi–Bellman) equation with appropriate boundary
conditions. The level sets of such value functions, evolving in time, describe the
tubes we need.

In addition to theoretical rigor, the solutions to modern control problems
must be effectively computable. That is, the results must be available within
prescribed time, perhaps on-line, the set-valued trajectory must be calculated with a
guaranteed accuracy, and the computation procedures should be able to handle high-
dimensional systems. This may require parallelization of solutions and distributed
computation. The computation approaches presented here meet such needs. They
are based on ellipsoidal calculus introduced in [174], successfully extended and
applied in [181, 182], and complemented by appropriate software tools [132].

The book is divided into eleven chapters. Chapter 1 provides an exposition of
problems in control theory for linear systems with solutions given in the specific
forms needed for transition to computable operations over trajectory tubes.

Chapter 2 is focused on how to solve. The main theoretical tools—Hamiltonian
methods and Dynamic Programming techniques—as applied to problems of reach-
ability and target control synthesis are described. These are reduced to optimization
problems, whose solution is given by an equation of the HJB type. In its turn, the
solution to the HJB equation produces value functions whose level sets are the
desired reach sets. Usually, attention is needed in interpreting the solution to the HJB
equation. However, for “linear-convex” systems (with convex constraints on the
controls and convex starting or terminal sets) the value functions are convex in the
state variables and usually unique. These functions are directionally differentiable
along any direction in the state space. Hence there is no need for subtle definitions of
generalized viscosity solutions since for equations used here they may be expressed
through conventional classical arguments. Moreover, direct integration of the HJB
equation is avoided by calculating the exact value function through duality methods
of convex analysis. Such a procedure is also used to apply a verification theorem
to the concrete HJB equation, confirming that the calculated value function is its
solution. This also allows us to derive the feedback control directly from the HJB
equation. The derived control is in general a set-valued function and its substitution
in the system equation produces a differential inclusion. Effective computation of
trajectories that steer the system from point to point arrives through an intersection
of colliding tubes—the forward reach tube from a given starting point and the
backward reach tube from a given terminal point. The final section describes a
solution to the problem of time-optimal target control.

Chapter 3 indicates how to calculate the solutions given as set-valued functions.
The approach develops external and internal ellipsoidal-valued functions that
approximate the reachability tubes. Parametrized families of ellipsoids are designed,
whose intersection produces an external bound and whose union produces an
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internal bound. Increasing the number of approximating ellipsoids in the limit
yields the exact reach set. The next move is to calculate the synthesizing feedback
target control. As already mentioned, such a feedback strategy may be calculated
directly from the HJB equation. However, this control strategy, being a nonlinear
function of time and state, would require an appropriate existence theorem for the
synthesized nonlinear differential inclusion. To avoid this possible difficulty, it is
convenient to use the “aiming” rule of Krasovski. Namely, calculating the backward
reachability set in advance, one should design the feedback control such that it keeps
the trajectory within the backward reach tube, following this “bridge” until it reaches
the terminal target set. The computation scheme for the aiming rule is as follows:
with given starting point in “time-space” that lies within or beyond the backward
reach set, one selects an internal ellipsoidal approximation of the backward set
that either contains this point or is the closest to it. This aiming strategy may be
calculated explicitly or with minimal computational burden.

Chapter 4 offers examples of problems solved by ellipsoidal methods and
illustrated graphically. Though attractive and effective, ellipsoidal solutions may
run into some degenerate cases that are more common for internal approximations.
These potential computational problems are especially evident in large systems
where the dimension of controls is much smaller than the system dimension. Ways
of regularizing such situations are discussed in a section on high-dimensional
systems. The described tools have proved effective in computational experiments.
The treatment of high-dimensional systems indicated here is reached through a
parallelization of solutions, which is a natural extension of the suggested schemes.

The first part of Chap. 5 is devoted to nonlinearity and nonconvexity. The general
approach formulated here is applicable to nonlinear systems and presented in the
form of a comparison principle. The idea is to approximate the available HJB
equation from above or below through relations that ensure guaranteed upper or
lower solution estimates by operating with functions simpler than in the original
equation. This approach does not depend on the type of exact solution to the HJB
equation, whether classic or generalized. At the same time, the comparison principle
allows one to develop a deductive approach to the ellipsoidal calculus of this book
in contrast with the inductive approach of Chap. 3. These topics are followed by
examples of reachability for nonlinear systems and calculation of the set of points
reachable within a time interval, which is a nonconvex union of convex sets. The
second part of the chapter deals with the application of ellipsoidal methods to
systems with non-ellipsoidal constraints, such as boxes and zonotopes (symmetrical
polyhedra).

The chapters that follow cover a variety of useful properties and specific
problems related to implementing the proposed approach. Chapter 6 emphasizes
the role of double constraints—the simultaneous presence of both a hard bound
and an integral bound on the controls. Solutions to such problems are needed for
treating impulse controls investigated in this chapter. Impulse inputs were previously
studied as open-loop controls with few special results on feedback solutions [23,36].
A theory of feedback impulse control is presented here for systems of arbitrary
dimension, with solutions in terms of quasi-variational inequalities of the HJB
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type. However, impulse inputs are ideal elements and their physical realization by
“ordinary” bounded functions may be achieved through approximation by double-
bounded controls which are functions whose bound tends to infinity.

Chapter 7 is concerned with dynamics and control of systems under state
constraints. Previously discussed problems are now subject to additional “viability”
restrictions on the state variables. The description covers solution approaches to
problems of reachability (forward and backward) and emphasizes specifics of
related mathematical techniques including ellipsoidal approximations. The case
of linear systems with convex hard bounds on controls and state coordinates are
worked out in detail.

The contents of Chaps. 1–7 indicate that one of the main items in treating
considered problems are trajectory tubes and the means of their calculation. The
same is true for the rest of the chapters. So Chap. 8 begins with fundamentals of
a general vision—the theory of trajectory tubes with models of their evolutionary
dynamics. Indicated results, together with considerations of the previous chapter,
are further applied to closed-loop control under state constraints, with techniques
borrowed from both Hamiltonian approach and duality theory of nonlinear analysis.
This brings forward the discussion to complex state constraints in the form of
obstacle problems, wherein constrained trajectories must simultaneously lie within
one set and outside another.

The next two chapters consider uncertainty, which is inherent in realistic
problems of control. These chapters may serve as an introduction to a more thorough
description of uncertainty.

Chapter 9 is a concise explanation of the theory of guaranteed state estimation,
also known as the set-membership bounding approach to external disturbances in
estimation models. In contrast with conventional descriptions, the present exposition
involves Hamiltonian methods and is applicable to nonlinear systems. Dynamic
estimation of system trajectories under unknown but bounded errors is also formu-
lated as a problem with state constraints, which now are not known in advance, but
arrive online, in real time. In the linear case the proposed deterministic “filtering”
equations demonstrate connections and differences when compared with stochastic
(Kalman) filtering. Both continuous and discrete measurements are considered.

The results of Chap. 9 have a natural application to problems of output feedback
control under unknown but bounded disturbances in system and measurement
inputs. These problems are addressed in Chap. 10. The solutions introduced there
are based on the notions of generalized state and information tubes which describe
the overall system dynamics. For the linear case with convex constraints on controls
and uncertainties items, computation schemes based on ellipsoidal approximations
are presented. Several examples are worked out.

Finally, Chap. 11 is confined to verification problems and hybrid systems, with
a description of exact solutions and ellipsoidal schemes for their computation. The
discussion is accompanied by some examples. Special attention is given to possible
involvement of impulse inputs in formal mathematical models of hybrid systems.
The aim of this chapter is to emphasize the applicability of techniques presented in
this book to the investigation of hybrid systems.
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J. Baras, T. Başar, F. Chernousko, P. Kokotovic, A. Krener, A.A. Kurzhanskiy,
Yu. Ledyayev, G. Leitmann, A. Lindquist, J. Lygeros, M. Milanese, I. Mitchell,
S. Mitter, A. Rantzer, J. Sousa, C. Tomlin, I. Vályi, and V. Veliov. Their valuable
comments helped to crystallize the contents.

We thank A. Daryin, M. Gusev, T. Filippova, I. Rublev, and P. Tochilin for
reading parts of the manuscript, their useful comments, and contributed illustrations.

Our thanks surely goes to the authors of illustrations for the examples of this
book. Their names are indicated throughout the text.

The authors are grateful to the US national Science Foundation, the first author is
also grateful to the Russian Foundation for Basic Research for the support of
work.

Moscow, Russia Alexander B. Kurzhanski
Berkeley, CA, USA Pravin Varaiya

their





Contents

1 Linear Control Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 The Controlled System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Control and State Constraints: Open-Loop

and Closed-Loop Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 Constraints on Control and State . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Open-Loop and Closed-Loop Control . . . . . . . . . . . . . . . . . . . . . 8

1.3 Optimal Control with Norm-Minimal Cost:
The Controllability Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.1 Minimum Energy Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.2 Minimum Magnitude Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.3 Controllability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.4 The Finite-Dimensional Moment Problem . . . . . . . . . . . . . . . . 17

1.4 The Reachability Problem: Time-Optimal Control . . . . . . . . . . . . . . . . . 18
1.4.1 Reachability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4.2 Calculating Controls for the Boundary

of Reach Set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4.3 Time-Optimal Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5 Optimal Open-Loop Control for Linear-Convex
Systems: The Maximum Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.5.1 The Necessary Conditions of Optimality . . . . . . . . . . . . . . . . . . 25
1.5.2 Degenerate Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.5.3 Sufficiency Conditions for Optimality . . . . . . . . . . . . . . . . . . . . . 32
1.5.4 A Geometrical Interpretation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.5.5 Strictly Convex Constraints on Control . . . . . . . . . . . . . . . . . . . 38

1.6 Duality Methods of Convex Analysis in Problems
of Optimal Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.6.1 The Primal and Dual Optimization Problems . . . . . . . . . . . . . 41
1.6.2 General Remark: Feedforward Controls . . . . . . . . . . . . . . . . . . . 46

xi



xii Contents

2 The Dynamic Programming Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.1 The Dynamic Programming Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.2 The Linear-Quadratic Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.3 Reachability Through the HJB Equation: Hard Bounds. . . . . . . . . . . . 58

2.3.1 Forward Reachability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.3.2 Backward Reachability or the Solvability Problem . . . . . . . 61

2.4 Reachability for Linear-Convex Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.4.1 Forward Reachability: Calculating the Value Functions . . 64
2.4.2 The Conjugate of the Value Function V0 . . . . . . . . . . . . . . . . . . 67
2.4.3 The Value Function (Backward) . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.5 Colliding Tubes: Calculating All Reachable Points . . . . . . . . . . . . . . . . 70
2.6 The Closed-Loop Target Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.7 Reachability Within an Interval. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
2.8 Dynamic Programming: Time-Optimal Control . . . . . . . . . . . . . . . . . . . . 83

3 Ellipsoidal Techniques: Reachability and Control Synthesis . . . . . . . . . . 87
3.1 Linear Systems Under Ellipsoidal Constraints. . . . . . . . . . . . . . . . . . . . . . 88
3.2 Ellipsoidal Approximation of Reach Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.3 Recurrent Relations: External Approximations . . . . . . . . . . . . . . . . . . . . . 94
3.4 The Evolution of Approximating Ellipsoids . . . . . . . . . . . . . . . . . . . . . . . . 102
3.5 The Ellipsoidal Maximum Principle and the Reachability Tube . . . 107
3.6 Example 3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.7 Reachability Sets: Internal Approximations . . . . . . . . . . . . . . . . . . . . . . . . 114
3.8 Example 3.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
3.9 Reachability Tubes: Recurrent Relations—Internal

Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
3.10 Backward Reachability: Ellipsoidal Approximations . . . . . . . . . . . . . . 128
3.11 The Problem of Control Synthesis: Solution Through

Internal Ellipsoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
3.12 Internal Approximations: The Second Scheme . . . . . . . . . . . . . . . . . . . . . 141

4 Solution Examples on Ellipsoidal Methods: Computation
in High Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
4.1 The Multiple Integrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.1.1 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
4.2 A Planar Motion Under Newton’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

4.2.1 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4.3 Damping Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

4.3.1 Calming Down a Chain of Springs in Finite Time . . . . . . . . 168
4.4 Computation in High-Dimensional Systems.

Degeneracy and Regularization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
4.4.1 Computation: The Problem of Degeneracy. . . . . . . . . . . . . . . . 182
4.4.2 Regularizing the Ellipsoidal Estimates . . . . . . . . . . . . . . . . . . . . 186
4.4.3 Regularizing the Estimate for the Reachability Tube . . . . . 189
4.4.4 Efficient Computation of Orthogonal Matrix S . . . . . . . . . . . 193
4.4.5 Parallel Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195



Contents xiii

5 The Comparison Principle: Nonlinearity and Nonconvexity . . . . . . . . . . 197
5.1 The Comparison Principle for the HJB Equation . . . . . . . . . . . . . . . . . . . 198

5.1.1 Principal Propositions for Comparison Principle . . . . . . . . . 198
5.1.2 A Deductive Approach to Ellipsoidal Calculus . . . . . . . . . . . 202

5.2 Calculation of Nonconvex Reachability Sets . . . . . . . . . . . . . . . . . . . . . . . 208
5.3 Applications of Comparison Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

5.3.1 Forward Reachability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
5.3.2 Systems with Hamiltonians Independent of the State. . . . . 215
5.3.3 A Bilinear System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
5.3.4 External Ellipsoids for the Unicycle: Reachability . . . . . . . 222

5.4 Ellipsoidal Methods for Non-ellipsoidal Constraints . . . . . . . . . . . . . . . 229
5.4.1 Degenerate Ellipsoids: Box-Valued Constraints . . . . . . . . . . 229
5.4.2 Integrals of Box-Valued Functions . . . . . . . . . . . . . . . . . . . . . . . . 231
5.4.3 Reachability Tubes for Box-Valued

Constraints: External Approximations. . . . . . . . . . . . . . . . . . . . . 235
5.4.4 Reach Tubes for Box-Valued Constraints:

Internal Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
5.5 Ellipsoidal Methods for Zonotopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

5.5.1 Zonotopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
5.5.2 Internal Ellipsoidal Tubes for a Zonotope . . . . . . . . . . . . . . . . . 243
5.5.3 External Ellipsoidal Tubes for a Zonotope . . . . . . . . . . . . . . . . 246

6 Impulse Controls and Double Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
6.1 The Problem of Impulse Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

6.1.1 Open-Loop Impulse Control: The Value Function . . . . . . . . 255
6.1.2 Closed-Loop Impulse Control: The HJB

Variational Inequality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
6.2 Realizable Approximation of Impulse Controls . . . . . . . . . . . . . . . . . . . . 266

6.2.1 The Realistic Approximation Problem . . . . . . . . . . . . . . . . . . . . 266
6.2.2 The Approximating Motions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

7 Dynamics and Control Under State Constraints . . . . . . . . . . . . . . . . . . . . . . . . 275
7.1 State-Constrained Reachability and Feedback . . . . . . . . . . . . . . . . . . . . . . 275

7.1.1 The Reachability Problem Under State Constraints . . . . . . 276
7.1.2 Comparison Principle Under State Constraints . . . . . . . . . . . 281
7.1.3 Linear-Convex Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

7.2 State-Constrained Control: Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
7.2.1 The Modified Maximum Principle. . . . . . . . . . . . . . . . . . . . . . . . . 289
7.2.2 External Ellipsoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
7.2.3 Generalized Multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
7.2.4 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
7.2.5 Specifics: Helpful Facts for State-Constrained

Control Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307



xiv Contents

8 Trajectory Tubes State-Constrained Feedback Control . . . . . . . . . . . . . . . . 311
8.1 The Theory of Trajectory Tubes: Set-Valued Evolution

Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
8.1.1 Trajectory Tubes and the Generalized

Dynamic System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
8.1.2 Some Basic Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
8.1.3 The Set-Valued Evolution Equation . . . . . . . . . . . . . . . . . . . . . . . 315
8.1.4 The Funnel Equations: Specific Cases . . . . . . . . . . . . . . . . . . . . . 316
8.1.5 Evolution Equation Under Relaxed Conditions . . . . . . . . . . . 319

8.2 Viability Tubes and Their Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
8.2.1 The Evolution Equation as a Generalized

Partial Differential Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
8.2.2 Viability Through Parameterization . . . . . . . . . . . . . . . . . . . . . . . 322

8.3 Control Synthesis Under State Constraints: Viable Solutions. . . . . . 325
8.3.1 The Problem of State-Constrained

Closed-Loop Control: Backward Reachability
Under Viability Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

8.3.2 State-Constrained Closed-Loop Control. . . . . . . . . . . . . . . . . . . 328
8.3.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

8.4 Obstacle Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
8.4.1 Complementary Convex State Constraints:

The Obstacle Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
8.4.2 The Obstacle Problem and the Reach-Evasion Set. . . . . . . . 335
8.4.3 Obstacle Problem: An Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
8.4.4 Closed-Loop Control for the Obstacle Problem. . . . . . . . . . . 338

9 Guaranteed State Estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
9.1 Set-Membership State Estimation: The Problem.

The Information Tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
9.2 Hamiltonian Techniques for Set-Membership State Estimation . . . 344

9.2.1 Calculating Information Tubes: The HJB Equation. . . . . . . 344
9.2.2 Comparison Principle for HJB Equations . . . . . . . . . . . . . . . . . 346
9.2.3 Linear Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

9.3 Ellipsoidal Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
9.3.1 Version AE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
9.3.2 Version-BE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
9.3.3 Example: Information Set for a Linear System . . . . . . . . . . . 354

9.4 Discrete Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
9.4.1 Continuous Dynamics Under Discrete

Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
9.4.2 Discrete Dynamics and Observations. . . . . . . . . . . . . . . . . . . . . . 358

9.5 Viability Tubes: The Linear-Quadratic Approximation . . . . . . . . . . . . 363



Contents xv

9.6 Information Tubes vs Stochastic Filtering Equations.
Discontinuous Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
9.6.1 Set-Valued Tubes Through Stochastic Approximations . . 367
9.6.2 The Singular Perturbation Approach:

Discontinuous Measurements in Continuous Time . . . . . . . 370

10 Uncertain Systems: Output Feedback Control . . . . . . . . . . . . . . . . . . . . . . . . . . 371
10.1 The Problem of OFC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
10.2 The System: The Generalized State and the Rigorous

Problem Formulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
10.3 The Overall Solution Scheme: General Case . . . . . . . . . . . . . . . . . . . . . . . 375
10.4 Guaranteed State Estimation Revisited: Information

Sets and Information States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
10.5 Feedback Control in the Information Space . . . . . . . . . . . . . . . . . . . . . . . . 381

10.5.1 Control of Information Tubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
10.5.2 The Solution Scheme for Problem C . . . . . . . . . . . . . . . . . . . . . 383
10.5.3 From Problem C to Problem Copt . . . . . . . . . . . . . . . . . . . . . . . . 385

10.6 More Detailed Solution: Linear Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
10.6.1 The “Linear-Convex” Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
10.6.2 The Computable Solution: Ellipsoidal Approximations . . 388

10.7 Separation of Estimation and Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
10.8 Some Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

11 Verification: Hybrid Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
11.1 Verification Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

11.1.1 The Problems and the Solution Schemes . . . . . . . . . . . . . . . . . . 396
11.1.2 Ellipsoidal Techniques for Verification Problems . . . . . . . . . 398

11.2 Hybrid Dynamics and Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
11.2.1 The Hybrid System and the Reachability Problem . . . . . . . 401
11.2.2 Value Functions: Ellipsoidal Approximation . . . . . . . . . . . . . . 407

11.3 Verification of Hybrid Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
11.3.1 Verification: Problems and Solutions . . . . . . . . . . . . . . . . . . . . . . 417
11.3.2 Ellipsoidal Methods for Verification . . . . . . . . . . . . . . . . . . . . . . . 418

11.4 Impulse Controls in Hybrid System Models . . . . . . . . . . . . . . . . . . . . . . . . 419
11.4.1 Hybrid Systems with Resets in Both Model

and System States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
11.4.2 Two Simple Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
11.4.3 Impulse Controls in Hybrid Systems . . . . . . . . . . . . . . . . . . . . . . 423
11.4.4 More Complicated Example: The

Three-Dimensional Bouncing Ball . . . . . . . . . . . . . . . . . . . . . . . . 425

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443





Notations

Rn—the n-dimensional Euclidean vector space, R1 D R

Rn�m— the linear space of n � m-matrices

hx; yi D x0y—the scalar (inner) product of vectors x; y 2 Rn; with prime as the
transpose

kxkM D hx; Myi1=2; M D M 0 > 0

kxk D kxkI ; I —the identity (unit) matrix

coQ; convQ—the convex hull of set Q

compRn—the variety of all compact subsets Q � Rn

convRn—the variety of all convex compact subsets Q � Rn

d.x; Q/ D inffkx � yk j y 2 Q:g—the distance of point x from set Q

h.P; Q/ D maxfhC.P; Q/; hC.Q; P /:g—the Hausdorff distance between sets
P; Q
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Chapter 1
Linear Control Systems

Abstract This chapter gives an exposition of control theory for linear systems
with emphasis on items and techniques given in a form appropriate for topics in
forthcoming chapters. It introduces problems of reachability and optimal target
control under constraints, as well as time-optimal control. Indicated are solution
approaches to open-loop control that involve the moment problem, the maximum
principle, and the duality methods of convex analysis.

Keywords Control theory • Linear systems • Open-loop control • Reachability •
Controllability • Maximum principle • Convex analysis

Among the mathematical models of controlled systems considered in this book
priority is given to those with linear structure [38, 40, 105, 120, 191, 245, 274]. This
class of systems allows detailed analysis with solutions in a form appropriate for
computational schemes that yield complete solutions to specific problems. In this
chapter we describe standard models and indicate the difference between the design
of open-loop control and closed-loop control strategies that use on-line measure-
ments. We treat problems of dynamic optimization, that is of optimal control. We
indicate several basic open-loop control problems with solution techniques centered
around necessary and sufficient conditions of optimality in two main forms: the
Maximum Principle and duality methods of convex analysis. We start with the
system model.

1.1 The Controlled System

A standard mathematical representation of a controlled system is an ordinary
differential equation (ODE) of the form

Px.t/ D f .t; x; u/; (1.1)

© Springer International Publishing Switzerland 2014
A.B. Kurzhanski, P. Varaiya, Dynamics and Control of Trajectory
Tubes, Systems & Control: Foundations & Applications 85,
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2 1 Linear Control Systems

in which t is time, the vector x 2 Rn is the state, and the vector u 2 Rp is the
control. The function f .t; x; u/ is defined in a domain

D D T � D � P ; t 2 T; x 2 D; u 2 P ;

in which it is assumed to be continuous. The time interval T may be bounded as
T D Œt0; t1�, or unbounded as T D Œt0; C1/ or T D .�1; t1�. The control set P
may be a compact subset of Rp or it may coincide with Rp . D is an open set that
may coincide with Rn.

The function f .t; x; u/ is assumed to satisfy a condition that guarantees unique-
ness and extendibility of solutions of (1.1) within the domain D. One such condition
is: the partial derivatives fxi .t; x; u/; i D 1; : : : ; n; are continuous in x uniformly
for t 2 T; u 2 P and the inequality

hx; f .t; x; u/i � k.1 C hx; xi/

holds for some k > 0 for all .t; x; u/ 2 D.
The book concentrates on systems with linear structure of the form

Px.t/ D A.t/x.t/ C B.t/u.t/ C v.t/; (1.2)

with x.t/ 2 Rn; u.t/ 2 Rp as before, and with v.t/ 2 Rn as a disturbance or
external forcing term. The n � n matrix function A.t/ 2 Rn�n and the n � p matrix
function B.t/ 2 Rn�p are assumed to be continuous in t , whereas u.t/; v.t/ are
assumed to be Lebesgue-integrable or piecewise right-continuous in t 2 T D
Œt0; C1/.1 Under these conditions the solution to (1.1) exists, is unique, and is
extendible within D D T � Rn � P for any initial position ft0; x0g; x.t0/ D x0.

Given an initial position ft0; x0g, the unique solution x.t/ D x.t; t0; x0/ is given
by the integral formula

x.t/ D G.t; t0/x0 C
Z t

t0

G.t; s/.B.s/u.s/ C v.s//ds: (1.3)

Here G.t; s/ is the fundamental transition matrix solution of the homogeneous
equation (1.2). That is, the matrix function G.t; s/ satisfies the equation

@

@t
G.t; s/ D A.t/G.t; s/; G.s; s/ D I (1.4)

1We use the terms measurable and integrable for Lebesgue-measurable and Lebesgue-integrable
functions.
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in t , as well as the matrix adjoint equation

@

@s
G.t; s/ D �G.t; s/A.s/; G.t; t/ D I; (1.5)

in s.
G.t; s/ is nonsingular for all t; s and has the following properties:

G�1.t; s/ D G.s; t/; so that G.t; s/G.s; t/ D I (invertibility formula); and

G.t; £/G.£; s/ D G.t; s/ .usually s � £ � t; superposition formula):

An integral formula for the adjoint equation, similar to (1.3), is given in (1.80).
When A.t/ � A is constant, G.t; s/ D exp.A.t � s//; in which exp A is the

matrix exponential.
Formula (1.3) may be checked by direct substitution. The existence of a solution

to system (1.2) is thus a standard property of linear differential equations (see [38,
105, 120, 274]).

Exercise 1.1.1. Check formula (1.3).

System (1.2) can be put into a simpler form. Transforming the state by

z.t/ D G.t0; t/x.t/; (1.6)

differentiating, and substituting x.t/ for z.t/ using (1.1), we come to

Pz.t/ D G.t0; t/B.t/u.t/ C G.t0; t/v.t/; (1.7)

with

z0 D z.t0/ D G.t0; t0/x0 D x0: (1.8)

Thus there is a one-to-one correspondence (1.6) between the solutions x.t/ and
z.t/ to Eqs. (1.2) and (1.7), respectively. Their initial values are related through (1.8).
The state z.t/ satisfies a particularly simple version of (1.2),

Pz.t/ D B0.t/u.t/ C v0.t/; z.t0/ D x0; (1.9)

with

B0.t/ D G.t0; t/B.t/; v0.t/ D G.t0; t/v.t/:

Thus we may consider system (1.9) rather than (1.2). In other words, in the notation
of (1.2) we may take A.t/ � 0 with no loss of generality. Note however that the
matrix function B.t/ is now time-variant (even when (1.2) is time-invariant).
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One should realize, however, that the transformation (1.6) allows us to take
A.t/ � 0 only within the time range ft � t0g, a different t0 leads to a different
transformation (1.6). A similar result is obtained by the substitution

z.t/ D G.t1; t/ x.t/:

With this choice of state the original system again gives A.t/ � 0, but this is correct
only for ft � t1g.

We shall sometimes make use of these transformations to demonstrate some
basic techniques with a simpler notation. The reader will always be able to return to
A.t/ 6� 0 as an exercise.

A shrewd reader may have now realized that there should exist a transformation
of the state that takes a given linear homogeneous equation

Px D A.t/x; (1.10)

into the linear system

Pz D A0.t/z; (1.11)

for any preassigned matrix A0.t/ with the same initial condition, x.t0/ D z.t0/.

Exercise 1.1.2. Indicate the transformation that converts Eq. (1.10) into (1.11) and
vice versa.

Among the equations of interest are linear matrix differential equations of the
form

PX.t/ D A.t/X.t/ C X.t/A1.t/ C V.t/; (1.12)

in which the state X.t/ and input V.t/ are n � n square matrices.
Introduce two transition matrices G.t; s/ and G1.t; s/

@

@t
G.t; s/ D A.t/G.t; s/; G.s; s/ D I I @

@t
G1.t; s/ D �A1.t/G1.t; s/;

G1.s; s/ D I: (1.13)

Assume X.t0/ D X0: Then an integral representation formula (similar to (1.3)) for
Eq. (1.12) is true, namely,

X.t/ D G.t; t0/X0G1.t0; t/ C
Z t

t0

G.t; s/V .s/G1.s; t/ds: (1.14)
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For A1.t/ D A0.t/ we have G1.t0; t/ D G0.t; t0/ and

X.t/ D G.t; t0/X0G0.t; t0/ C
Z t

t0

G.t; s/V .s/G0.t; s/ds: (1.15)

Exercise 1.1.3. (a) Check formula (1.14) by substitution.
(b) Solve Exercise 1.1.2 for Eq. (1.12).

Also within the scope of this book are quasilinear systems of the form

Px.t/ D A.t/x.t/ C B.t/®.t; u/ C v.t/; (1.16)

with ®.t; u/ continuous in ft; ug 2 T � Rp and convex in u.
More complicated systems that can be treated with the techniques developed in

this book are bilinear systems of the form

Px.t/ D A.t; u/x.t/ C v.t/; u 2 U; (1.17)

with A.t; u/ D A.t/U C D.t/, with matrix of controls U 2 Rn�n and continuous
matrices of coefficients A.t/; D.t/ 2 Rn�n. In a simple case we may have A.t; u/ D
A.t/u C D.t/ with a scalar u.

1.2 Control and State Constraints: Open-Loop
and Closed-Loop Control

One objective of this book is to develop solutions for systems subject to constraints
on the control and state. The values u of the control may be restricted by various
types of bounds. Here are some typical types.

1.2.1 Constraints on Control and State

Hard bounds also known as geometrical or magnitude bounds are constraints of
the form

u 2 P .t/; (1.18)

in which P .t/ is a Hausdorff-continuous set-valued function P W T ! convRp .
The symbol convRn denotes the class of closed, convex sets in Rn, while compRn

denotes the class of compact, convex sets in Rn. In the sequel, unless specially
remarked, we shall suppose that P .t/ has a nonempty interior in Rp for all t:
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Hard bounds may also be specified as the level set (at level �) of a function
®.t; u/:

U�.t/ D fu W ®.t; u/ � �g:

Suppose ®.t; u/ is continuous in t; u and convex in u. Then its level set P�.t/ will
be closed and convex. As indicated in [237], for U�.t/ 6D ; to be bounded, hence
compact, for any �, it is necessary and sufficient that

0 2 int
�

Dom®�.t; �/
�
: (1.19)

Here

®�.t; l/ D supfhl; ui � ®.t; u/ j u 2 Rpg

is the (“Fenchel”) conjugate of ®.t; u/ in the variable u; and

Dom®�.t; �/ D fl W ®�.t; l/ < 1g;

is the effective domain of the function ®�.t; l/ for fixed t , see [237] (interiorQ
denotes the collection of all interior points of a set Q). Under condition (1.19) the
level sets P�.t/ will be bounded, ®.t; u/ ! 1 as hu; ui ! 1; and in the definition
of ®�.t; l/ the operation of “sup” may be replaced by “max,” see [72]. Under the
given conditions the convex compact set-valued function P�.t/ will be Hausdorff-
continuous.

In practice, hard bounds represent limits imposed by equipment or considerations
of safety on a control variable such as voltage, force, or torque. Linear control syn-
thesis techniques, like those based on frequency domain methods, which formulate
the control as a linear function of the state, cannot satisfy hard bounds.

Integral bounds, also known as soft bounds, are constraints of the form

Z t1

t0

jju.t/jjqdt � �; � > 0; q � 1; (1.20)

in which jjujj is a norm and q is usually an integer. A more general integral bound
is expressed as

Z t1

t0

®.t; u.t//dt � �; (1.21)

in which ®.t; u/ is continuous in t; u and convex in u, with int
�

Dom®�.t; �/
�

6D ;.
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Among the integral bounds one may single out

Z t1

t0

ku.t/kdt � �; � > 0; (1.22)

which coincides with (1.20) for q D 1, and

Z t1

t0

� kX
iD0

kd i u.t/=dt i k
�

dt � �; � > 0: (1.23)

Constraints (1.22), (1.23) may be satisfied by controls u that weakly converge to
generalized functions: delta functions u D •.t � £�/ and their derivatives such as
u D •.i/.t � £�/.

Integral bounds can represent limits on energy consumption, using (1.20) with
q D 2. A delta-function control, u D •.t � £�/, is an impulse control that causes an
instantaneous change in the state, x.£� �0/ ¤ x.£� C0/, as can be seen from (1.3).
The constraint (1.23) (with k D 1) is used to restrict the instantaneous change in
state.

Joint bounds (or double bounds) combine hard and soft bounds. For example, u
must simultaneously satisfy two constraints (hard and soft):

u.t/ 2 P .t/; t 2 Œt0; t1�;

Z t1

t0

jju.s/jj2ds � �2; or (1.24)

hu.t/; u.t/i � �2; t 2 Œt0; t1�;

Z t1

t0

hu.s/; u.s/i1=2ds � �2: (1.25)

Constraint (1.25) can be used to approximate an impulse control by increasing �2

while keeping � fixed.
Constraints may also be imposed on the state space variables. Taking z.t/ D

H.t/x.t/, with H.t/ 2 Rm�n continuous, the constraint may be

z.t/ 2 Z.t/; t 2 Tz;

in which Tz may comprise a discrete set of points, Tz D f£1; : : : £kg � T , or it may
be an interval such as T D Tz.

The set-valued function Z.t/ 2 convRm is assumed to be piecewise absolutely
continuous in t in the Hausdorff metric (see [76]). Note that the solutions to
system (1.2) are piecewise absolutely continuous functions (with discontinuities
corresponding to impulse controls), hence differentiable almost everywhere. Thus
the properties of the bounding function Z.t/ match those of the system solutions.

Also common are integral bounds on the state trajectories of the form

Z t1

t0

®.t; x/dt � �; (1.26)
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with ®.t; x/ being convex in x; or mixed integral bounds on both control and state
of the form

Z t1

t0

®.t; x; u/dt � �; (1.27)

in which ®.t; x; u/ is continuous in t and convex in x; u.
In addition to these common constraints we will also meet in this book some

nonstandard constraints that are less common, but which are very relevant for our
problems. Such, for example, are bounds that define obstacle problems of Chap. 8,
Sect. 8.4, when the system trajectory must lie beyond one convex set and within
another at the same time, or state constraints that are due to on-line measurements
under unknown but bounded noise in Chap. 9.

1.2.2 Open-Loop and Closed-Loop Control

In addition to constraints, one needs to specify the class of functions from which the
controls are to be selected. The appropriate class of functions should be considered
from both the mathematical and control design points of view.

Mathematically, we will consider classes that are functions of time only, u D
u.t/, and those that are functions of both time and state, u D u.t; x/. The two
classes are called open-loop and closed-loop controls, respectively.

An open-loop control, u D u.t/, is required to be measurable. For each open-loop
control, the solution to (1.1) reduces to solving the equation

Px D f .t; x; u.t//;

which, in the linear case, is immediate through the integral formula (1.3). Thus,
substituting an open-loop control u.t/ in (1.1) or (1.2) gives a unique solution xŒt � D
x.t; t0; x0/ for any starting position ft0; x0g; x.t0/ D x0. From the point of view of
control design, taking u D u.t/ as a function of time only means that the selection
of the control action for each time t is fixed, implanted in the system design, and
cannot be changed throughout the process, which lasts from t0 to t1: The class of
open-loop controls is denoted by UO .

A closed-loop control, u D u.t; x/, depends on both t and x. The function u.t; x/

may be nonlinear, even discontinuous, in x. The class of admissible closed-loop
controls u.t; x/ must however be so restricted that nonlinear differential equations
of type

Px.t/ D f .t; x; u.t; x.t///;
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or

Px.t/ D A.t/x.t/ C B.t/u.t; x.t// C v.t/; (1.28)

would have a solution in some reasonable sense. That is, there should be an existence
theorem ensuring that Eq. (1.28) can be solved.

From the point of view of design and implementation, a closed-loop control
selects the control action u.t; x/ at each time t depending on the value of the state
x.t/. For on-line control (that is, when the value of the control action u.t; x.t//

is calculated in real time), the design presupposes that the state x.t/ is exactly
measured for all t and continuously communicated to the control device. A control
of this form leads to a feedback loop (also “closed loop”), hence the name closed-
loop or feedback control. They are also referred to as synthesized controls in
contrast with controls of class UO which are known as control programs or open-
loop controls. The class of closed-loop controls to be used, complemented with an
existence theorem, is denoted by UC .

If the disturbance term v.t/ is fixed, there is no essential difference between UO
and UC , as the following exercise indicates.

Exercise 1.2.1. Suppose the disturbance v.t/ in (1.28) is fixed. Let xŒt � D
x.t; t0; x0/ be a given solution of (1.28) under a closed-loop control g.t; x/, i.e.,

Px.t/ D A.t/x.t/ C B.t/g.t; x.t// C v.t/:

Show that there is a corresponding open-loop control u.t/ such that xŒt � is also the
solution of

Px.t/ D A.t/x.t/ C B.t/u.t/ C v.t/:

Show also that the corresponding open-loop control depends on the disturbance, i.e.,
if the disturbance input v.t/ changes, so does the open-loop control in order to keep
the same solution xŒt �.

Thus the difference in system performance achieved by using open-loop and closed-
loop controls becomes apparent for systems subject to unknown disturbances. The
control of systems with unknown disturbances is mentioned in Chap. 10.

In practice, exact measurement of the state vector x may not be possible. The
measurement may be incomplete because only a part of the vector x or a function of
x can be measured, or because the measurements can be taken only at discrete time
instants, or because the measurements may be corrupted by unknown disturbances
(“noise”). Consideration of such situations will bring us to new classes of feedback
control.

In many cases treated later we allow the closed-loop control u D U.t; x/

to be a set-valued map, with values U.t; x/ 2 compRp , measurable in t and
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upper-semicontinuous in x [7, 8, 48, 238]. Upon substituting u D U.t; x/, Eq. (1.2)
then becomes a nonlinear differential inclusion,

Px.t/ 2 A.t/x.t/ C B.t/U.t; x/ C v.t/; (1.29)

whose solution exists and in general is set-valued [75, 76]. The class of such set-
valued controls is denoted by UCS .

In the next section we consider several problems of optimal control within the
class of open-loop controls UO . These are the “norm-minimal” controls that can be
obtained through simple considerations.

1.3 Optimal Control with Norm-Minimal Cost:
The Controllability Property

The moment problem is a simple way of presenting the two-point boundary problem
of control. It naturally allows to present the optimality criterion as one of minimizing
the norm of the control u.t/ in an appropriate functional space.

Consider system (1.2) on a finite time interval T D Œt; ª�. We start with one of
the simplest problems of optimal control.

1.3.1 Minimum Energy Control

Problem 1.3.1. Given system (1.2) and two points, xŒt � D x, xŒª� D x.1/, find the
optimal control that moves the system trajectory xŒs� D x.s; t; x/ from x to x.1/

with minimum cost

J .t; x/ D min

� Z ª

t

hu.s/; N.s/u.s/ids j u.�/ 2 L .p/
2 .T /

�
; (1.30)

in which the continuous p � p matrix N.s/ is positive definite, N.s/ D N 0.s/ > 0.

We shall solve this problem applying basic Hilbert space techniques. Using
formula (1.3) the boundary constraints xŒt � D x; xŒª� D x.1/ may be rewritten
in the form

Z ª

t

G.ª; s/B.s/u.s/ds D x.1/ � G.ª; t/x �
Z ª

t

G.ª; s/v.s/ds D c: (1.31)
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Define the n � p matrix D.s/ D G.ª; s/B.s/ with rows d .i/; i D 1; : : : ; n.
For a p-dimensional row d.�/ denote

hd 0.�/; u.�/iN D
Z ª

t

d.s/N.s/u.s/ds:

to be an inner product in L .p/
2 .T /—the space of square-integrable Rp-valued

functions. Consider both d .i/.�/ and u.�/ as elements of the Hilbert space L .p/
2 .T /

space, with norm

ku.�/kN D
�Z ª

t

hu.s/; N.s/u.s/ids

�1=2

:

The cost of a control u is the square of its norm and Problem 1.3.1 is to find
the element of a Hilbert space with minimum norm that satisfies certain linear
constraints.2 We can thus reformulate Problem 1.3.1.

Problem 1.3.1-A: Minimize hu.�/; u.�/iN under the constraints

hD0.�/; u.�/i D hN �1.�/D0.�/; u.�/iN D c: (1.32)

We assume that the n functions d .i/.�/ are linearly independent, which means
that for any n-dimensional row-vector œ, œD.t/ D 0, a.e. for t 2 T , only if œ D 0.

Now consider controls of the form u.s/ D N �1.s/D0.s/l; for some l 2 Rn, and
substitute in (1.32), to get

W.ª; t/l D c; W.ª; t/ D
Z ª

t

D.s/N �1.s/D0.s/ds:

The Gramian or Gram matrix W.ª; t/ is nonsingular if and only if the functions
d .i/ are linearly independent [82]. As we shall observe later in this section the
determinant jW.ª; t/j 6D 0 (for any matrix N.s/ D N 0.s/ > 0) ensures that
system (1.2) is controllable (see below, Lemma 1.3.1).

The particular control

u0.s/ D N �1.s/D0.s/l0; l0 D W �1.ª; t/c; (1.33)

satisfies the constraint (1.32). We now show that u0.s/ minimizes the cost (1.30).

2We could also regard functions d .i/.s/ as elements of L .p/

q� ŒT �, q� � 1. Later, while dealing

with impulse controls, it will be more convenient to treat functions d .i/.s/ as elements of the
space C .p/ŒT �.
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Indeed, suppose u.s/ satisfies (1.32), but u.s/ 6D u0.s/. Then ue.s/ D u.s/ �
u0.s/ 6D 0 satisfies

hN �1.�/D0.�/; ue.�/iN D hN �1.�/D0.�/; N.�/ue.�/i D hD0.�/; u.s/ � u0.s/i D 0;

and

hu.�/; N.�/u.�/i D hu0.�/ C ue.�/; N.�/.u0.�/ C ue.�//i
D hu0.�/; N.�/u0.�/i C hue.�/; N.�/ue.�/i
� hu0.�/; N.�/u0.�/i;

since hu0.�/; N.�/ue.�/i � 0 due to (1.33). This gives the next result.

Theorem 1.3.1. The optimal control for Problem 1.3.1 is given by the continuous
function

u0.s/ D N �1.s/D0.s/W �1.ª; t/c:

Remark 1.3.1. If x.1/ D 0; v.s/ � 0, then c D �G.ª; t/x, so that the optimal
control

u0.s/ D �N �1D0.s/W �1.ª; t/G.ª; t/x; (1.34)

is linear in x. This property will be important later in treating problems of closed-
loop control.

We have just solved the simplest case of the moment problem for L .p/
q with q D 2

(see Theorem 1.3.4 below).

1.3.2 Minimum Magnitude Control

Problem 1.3.2. Given system (1.2), starting position xŒt � D x, and convex compact
terminal set M and terminal time ª, find the optimal control that moves the system
trajectory xŒs� D x.s; t; x/ from x to some point xŒª� 2 M with minimum cost

J .t; x/ D min ess sup fku.s/k; s 2 T g; (1.35)

in which kuk is a norm in Rp .

If u.s/ is a continuous or even a piecewise right- or left-continuous function, we
may substitute “esssup” by “sup.”
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From formula (1.3) the terminal constraint is

Z ª

t

G.ª; s/B.s/u.s/ds C G.ª; t/x C
Z ª

t

G.ª; s/v.s/ds D xŒª� 2 M : (1.36)

Again take D.s/ D G.ª; s/B.s/. We treat its rows—the p-dimensional functions
d .i/.�/—as elements of L1 D L .p/

1 ŒT � and treat the control u.�/ as an element of its

conjugate space L1 D L .p/1 ŒT �. Denote the bilinear functional

hu.�/; d.�/i D
Z ª

t

hd.s/; u.s/ids

and norms

kd.�/kL1 D
Z ª

t

kd.s/kds; ku.�/kL1
D ess supfku.s/k j s 2 T g:

Here the finite-dimensional norms ku.s/k and kd.s/k are conjugate.
Let us now take

B1 D fu.�/ W ku.�/kL1
� 1g;

and find the smallest � D �0 for which there exists u.�/ 2 �B1 that satisfies (1.36).
Since M is convex and compact, x.ª/ 2 M is equivalent to the system of

inequalities

hl; x.ª/i � ¡.l j M / D maxfhl; xi j x 2 M g; 8l 2 Rn:

So the necessary and sufficient condition for u.�/ to satisfy (1.36) is

Z ª

t

l 0G.ª; s/B.s/u.s/ds C hl; c�i � ¡.l j M /; 8l 2 Rn; (1.37)

in which

c� D G.ª; t/x C
Z ª

t

G.ª; s/v.s/ds:

Hence, for some u.�/ 2 �B1 to satisfy (1.36), it is necessary and sufficient that

min
u

� Z ª

t

l 0D.s/u.s/ds j u.�/ 2 �B1
�

C hl; c�i � ¡.l j M /; 8l 2 Rn;
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or

�

Z ª

t

minfl 0D.s/u.s/ j ku.s/k � 1gds C hl; c�i � ¡.l j M /g; 8l 2 Rn;

from which it follows that

� � �0 D max
l

� hl; c�i � ¡.l j M /

kl 0D.�/kL1

�
: (1.38)

Under the assumption jW.ª; s/j ¤ 0, (with N.s/ � I /—the controllability
property—the maximizer in (1.38) is l0 ¤ 0.

Because the numerator and denominator in (1.38) are homogeneous, if l0 is a
maximizer, so is ’l0; 8’ > 0. Hence �0 may be found by solving

�0 D max
l

�
hl; c�i � ¡.l j M /

ˇ̌
ˇ̌
Z ª

t

kl 0D.s/kds D 1

�
; (1.39)

or

.�0/�1 D min
l

� Z ª

t

kl 0D.s/kds

ˇ̌
ˇ̌ hl; c�i � ¡.l j M / D 1

�
: (1.40)

We are thus led to the next result whose proof follows from (1.40) and the definition
of the norms involved.

Theorem 1.3.2. The minimum magnitude control u0 that solves Problem 1.3.2
satisfies the maximum condition

maxfl00

D.s/u j kuk � �0g D l00

D.s/u0.s/ D �0kl00

D.s/k; s 2 T; (1.41)

in which l0 is the maximizer in (1.39) or the minimizer in (1.40).

The maximum condition is a particular case of the maximum principle discussed
further in more detail in Sect. 1.5.

A not uninteresting problem is the following:

Problem 1.3.2-A Find largest � D �� for which the inclusion (1.36) holds for all
u.�/ 2 �B1.

In order to fulfill the requirement of Problem 1.3.2 it is necessary and sufficient
that

max
u

� Z ª

t

l 0D.s/u.s/ds j u.�/ 2 �B1
�

C hl; c�i � ¡.l j M /; 8l 2 Rn;
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or

�

Z ª

t

maxfl 0D.s/u j kuk � 1gds C hl; c�i � ¡.l j M /; 8l 2 Rn;

from which

�� D min
l

�
¡.l j M / � hl; c�i

kl 0D.�/kL1

�
: (1.42)

(As before, kuk is the Rp-dimensional norm conjugate to the norm used in
kl 0D.s/k.)

Theorem 1.3.3. The solution to Problem 1.3.2-A is given by formula (1.42).

Exercise 1.3.1. Solve Problem 1.3.1 with minimum cost

J .t; x/ D min

� Z ª

t

.u.s/; N.s/u.s//q=2ds

ˇ̌
ˇ̌ u.�/ 2 L .p/

q .T /

�
; 1 < q < 1; q 6D 2:

(1.43)

instead of (1.30).

Observe that the existence of solutions to Problems 1.3.1, 1.3.2 (and as one may
check, also to (1.43)) requires the solvability of Eq. (1.32) for any vector c D
.c1; : : : ; cn/0. This is guaranteed if and only if the functions d .i/.�/; i D 1; : : : ; n;

which are the rows of the n � p matrix

D.s/ D G.ª; s/B.s/

are linearly independent over T D Œt; ª�:

Let 1=q C 1=q� D 1.

Definition 1.3.1. An array of elements d .i/.�/ 2 L .p/

q� ŒT �; q� 2 Œ1; 1� is said to be

linearly independent if l 0D.s/ D P
i li d

.i/.s/ D 0 a.e. implies l D 0.

Lemma 1.3.1. The functions d .i/.�/ are linearly independent if and only if the
symmetric matrix W.ª; t/ D R ª

t
D.s/D0.s/ds with elements

Wij D
Z ª

t

hd .i/.s/; d .j /.s/ids

is nonsingular, i.e., its determinant jW.ª; t/j 6D 0:

W.ª; t/ is known as the Gram matrix.
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Exercise 1.3.2. Prove Lemma 1.3.1.

Lemma 1.3.1 leads to the following conclusion.

Lemma 1.3.2. Equation (1.32) is solvable for any vector c within the class of
functions u.�/ 2 L .p/

q ŒT �; q 2 Œ1; 1� if and only if jW.ª; t/j 6D 0:

1.3.3 Controllability

The notion of controllability which characterizes the solvability of the two-point
boundary control problem for any pair of points was introduced by Kalman [107,
109]. Having stimulated intensive research on the structure of time-invariant linear
systems [274], it became one of the basic concepts in control theory for any type of
system.

The solvability of (1.32) for any c means that there exists a control that transfers
the system (1.2) from any given starting position ft; xg; xŒt � D x to any given
terminal position fª; x1g; xŒª� D x1. (Since c is defined by (1.31), by choosing
appropriate vectors x; x1, we can get any c.)

Definition 1.3.2. System (1.2) is said to be controllable over Œt; ª� if given any
positions ft; xg and fª; x1g, there exists a control u.s/; s 2 Œt; ª� which steers the
system from ft; xg to fª; x1g. The system is completely controllable over Œt; ª� if
it is completely controllable over any subinterval Œt1; t2� 	 Œt; ª�, t1 < t2.

The notion of controllability deals with the existence of controls that solve certain
boundary problems [109]. It is applicable to a broad class of systems, allowing many
versions.

Corollary 1.3.1. System (1.2) is controllable over Œt; ª� iff jW.ª; t/j 6D 0 and it is
completely controllable iff jW.ª; t/j 6D 0; 8Œt1; t2� 	 Œt; ª�, t1 < t2.

The Gram matrix W.ª; t/ is also known as the controllability matrix for
system (1.2).

Remark 1.3.2. (i) In the case of constant matrices A.t/ � A; B.t/ D B the
property of complete controllability is equivalent to the condition that the set of
column vectors in the array

B; AB; : : : ; An�1B

contains a subset of n linearly independent vectors. In other words, the matrix
ŒB; AB; : : : ; An�1B� has full rank n.
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(ii) A stronger version of condition (i) requires

b.i/; Ab.i/; : : : ; An�1b.i/

to be linearly independent for each i D 1; : : : ; p; : This is the case of strong
complete controllability.

In the time-varying case the stronger version requires complete controllability
of (1.2) with B.t/ replaced by b.i/.t/.

Exercise 1.3.3. Prove the assertion of Remark 1.3.2(i).

Remark 1.3.3. From Corollary 1.3.1 it follows that the controllability condition for
controls in L .p/

q ŒT �; q 2 Œ1; 1� is the same for all q. However, when solving
an optimization problem of type Exercise 1.3.1 within the class of controls from
L .p/

1 ŒT �, with q D 1, the minimum may not be attained in this class but is attained
in a broader class that includes generalized delta functions.

Exercise 1.3.4. For the one-dimensional system

Px D ax C u;

consider the problem of finding a control that moves the state from xŒt � D x0 6D 0

to x.ª/ D x.1/ D 0 with minimum cost

minf
Z ª

t

ju.s/jds j u.�/ 2 L .1/
1 ŒT �g:

Show that if a ¤ 0 the minimum is not attained, but is attained in the broader class
that includes delta functions.

An interesting issue is therefore to solve an optimization problem like Exercise
1.3.1, but with u.�/ D dU.�/=dt being the generalized derivative of U (in the sense
of the theory of distributions, [242]) and with cost as the total variation VarU.�/
of the function U.t/ over the interval T . The solution, which may include delta
functions and its derivatives, is considered later in a separate section.

1.3.4 The Finite-Dimensional Moment Problem

Consider Eq. (1.32) with D.s/ D G.ª; s/B.s/ having rows d .i/.�/ 2 L .p/
q ŒT �; T D

Œt; ª�: Let kd.�/k.p/
q denote the norm in the L .p/

q ŒT �. The classical finite-dimensional

moment problem seeks solutions u.�/ 2 L .p/
q ŒT � of (1.32) with minimum norm [1].
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Theorem 1.3.4. Suppose the d .i/.�/ 2 L .p/

q� ŒT �; q� 2 Œ1; 1/; i D 1; : : : ; n; are

linearly independent. Then (1.32) is solvable by some u.�/ 2 L .p/
q ŒT �; ku.�/k.p/

q �
�, if and only if

�

 Z ª

t

hD0.s/l; D0.s/liq�=2ds

!1=q�

� hl; ci; 8l 2 Rn:

Here 1=q C 1=q� D 1:

Theorem 1.3.4 suggests a scheme to calculate norm-minimal solutions to the two-
point boundary control problem for linear systems by reducing it to the moment
problem. This approach, which also applies to impulse controls, was brought into
linear control theory by Krasovski [120]. Equivalent results are also obtained
through the techniques of convex analysis that are used in this book.

So far we considered the problem of reaching a particular state. We now pass to
the problem of finding all the states reachable from a given starting point through
all possible controls, restricted by a given bound.

1.4 The Reachability Problem: Time-Optimal Control

1.4.1 Reachability

This is one of the important elements in analyzing system performance, namely,
what states may be reached in given time by available controls?

Consider system (1.2) with v.s/ � 0,

Px.t/ D A.t/x.t/ C B.t/u; (1.44)

and control constraint (1.18): u.s/ 2 P .s/; s 2 Œt; 1/.

Definition 1.4.1. The reach set X Œª� D X .ª; t0; x0/ of system (1.44) at given
time ª, from position ft0; x0g, is the set of all points x for each of which
there exists a trajectory xŒs� D x.s; t0; x0/, generated by a control subject to the
given constraint (1.18), that transfers the system from position ft0; x0g to position
fª; xg; x D xŒª�:

X .ª; t0; x0/ D fx W 9u.�/ 2 P .�/ such that x.ª; t; x0/ D xg:

The reach set X Œª� D X .ª; t0; X 0/ from set-valued position ft0; X 0g at given time
ª is the union

X .ª; t0; X 0/ D
[

fX .ª; t0; x0/ j x0 2 X 0g:

The reach set is also known as the attainability set.
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Lemma 1.4.1. With X 0 and P .s/; s 2 T D Œt0; ª�, convex and compact, the reach
set X Œª� is also convex and compact.

Proof. Consider two points x0 2 X Œª� reached through control u0.s/ 2 P .s/, and
x00 2 X Œª�, reached through u00.s/ 2 P .s/; s 2 Œt0; ª�. The convexity of X 0 and
P .s/ implies that x.’/ D ’x0 C .1 � ’x00/ ; ’ 2 Œ0; 1� is reached through u.’/.s/ D
’u0.s/C.1�’/u00.s/ 2 P .s/ with initial condition x.’/Œt0� D ’x0Œt0�C.1�’/x00Œt0�:

This shows convexity. Boundedness of X Œª� is obvious. That X Œª� is closed follows
from the fact that the set of functions u.�/ 2 P .�/ is weakly compact in L .p/

2 , so if
xn is reached through u.n/.�/ and xn ! x, then x is reached by a weak limit u.�/ of
fu.n/.�/g. ut
Problem 1.4.1. Find the reach set X Œª�.

Since X Œª� D X .ª; t0; x0/ is convex and compact, we shall describe it through its
support function

¡.l j X Œª�/ D maxfhl; xi j x 2 X Œª�g
D maxfhl; xŒª�i j u.�/ 2 P .�/; xŒt0� D x0 2 X 0g: (1.45)

Using formula (1.3), rewrite (1.45) as

¡.l j X Œª�/ D max

� Z ª

t0

l 0G.ª; s/B.s/u.s/ds C l 0G.ª; t/x0 j u 2 P .s/; x0 2 X 0

�

D
Z ª

t0

maxfl 0G.ª; s/B.s/u j u 2 P .s/gds C maxfl 0G.ª; t0/x0 j x0 2 X 0g

D
Z ª

t0

¡.B 0.s/G0.ª; s/l j P .s//ds C ¡.G0.ª; t0/l j X 0/: (1.46)

Introducing the column vector §Œt� D §.t; ª; l/ D G0.ª; t/l as the solution to the
adjoint equation

P§.t/ D �A0.t/§.t/; §Œª� D l; (1.47)

we may express the support function of X .ª; t0; X 0/ in the following form.

Lemma 1.4.2. The reach set from set-valued position ft0; X 0g is given by the
formula

¡.l j X .ª; t0; X 0// D
Z ª

t0

¡.B 0.s/§Œs� j P .s//ds C ¡.§Œt0� j X 0/: (1.48)

The reach set X Œt � D X .t; t0; X 0/ regarded as a set-valued function of t , has the
following interpretation. Consider the differential inclusion

Px 2 A.t/x C B.t/P .t/;
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which is a differential equation with set-valued right-hand side [7, 75]. From a
starting position ft0; X 0g it has a set-valued solution X Œt � D X .t; t0; X 0/ which
is nothing else than the reach set X Œt �. This set X Œt � may be represented as the set-
valued integral

X Œt � D G.t; t0/X 0 C
Z t

t0

G.t; s/B.s/P .s/ds:

The set-valued integral above may be interpreted in the sense of either Riemann or
Lebesgue.

1.4.2 Calculating Controls for the Boundary of Reach Set

The support functions in (1.46), (1.48) yield the boundary @X Œª� of the set X Œª�. We
may also need to find a control that leads to each point of this boundary. We will
do that by calculating, for each direction l , the points of the boundary that are the
points of support xl for X Œª� in the direction l . For any l , xl is the solution to the
optimization problem

xl D arg maxfhl; xi j x 2 X Œª�g;

maxfhl; xi j x 2 X Œª�g D ¡.l j X Œª�/

D
Z ª

t0

¡.B 0.s/G0.ª; s/l j P .s//ds C ¡.G0.ª; t0/l j X 0/:

(1.49)

Remark 1.4.1. By considering all directions l 2 Rn; one gets all the points of
support of X Œª�. Since, with l fixed, all the vectors ’l; ’ > 0, give the same point
of support xl , it suffices to deal only with vectors l of unit norm, hl; li D 1.

The calculation of xl decomposes into separate calculations of the two terms
in (1.49). The second term, which gives the appropriate initial condition, is obtained
through a convex optimization problem. The first term, which gives the control ul .t /

corresponding to xl from formula (1.46) is considered next.

Lemma 1.4.3. The point of support xl for X Œª� in direction l satisfies rela-
tion (1.49). The control ul .t / that steers the system to point xl satisfies the maximum
condition

l 0G.ª; s/B.s/ul .s/ D maxfl 0G.ª; s/B.s/u j u 2 P .s/g D ¡.l j G.ª; s/B.s/P .s//:

(1.50)
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Fig. 1.1 The hyperplane H.l/ supports X at xl and X � H�.l/ (left). Inner and outer
approximation to X (right)

Exercise 1.4.1. Prove formula (1.50) and also the assertions stated in Remark 1.4.1.

Definition (1.49) of xl has the following geometric interpretation. Since

¡l D ¡.l j X Œª�/ D hl; xli � hl; xi; x 2 X D X Œª�;

the hyperplane H.l/ D fx j hl; xi D ¡lg with normal l supports X at the point xl .
See Fig. 1.1.

Observe that the reach set X is contained in the closed half-space

H�.l/ D fx j hl; xi � ¡lg:

Thus we have the inner and outer approximation to X Œª� of the following exercise.

Exercise 1.4.2. Let l1; � � � ; lk be nonzero vectors. Let ¡i D ¡.li j X Œª�/, and
xi D xli . Show that

cofx1; � � � ; xkg 	 X Œª� 	 \k
iD1H�.li /:

Here cofx1; � � � ; xkg denotes the convex hull of fx1; � � � ; xkg.

The reach sets may be of course calculated under constraints other than (1.18).

Problem 1.4.2. Find reach set X Œª� D X .ª; t0; x0/ of Problem 1.4.1 under the
integral constraint

ku.�/kLq D
�Z ª

t0

hu.s/; u.s/iq=2ds

� 1
q

� �; � > 0; q 2 .1; 1/; (1.51)

with q integer, instead of constraint (1.18).
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Since

¡.l j X Œª�/ D max
u

fhl; xŒª�i j ku.�/kLq � �; xŒt0� D x0g;

we have

¡.l j X Œª�/ D �

�Z ª

t0

.§0Œt �B.t/B 0.t/§Œt �/q�=2dt

� 1
q�

C §0Œt0�x0; (1.52)

where 1=q�C1=q D 1; so that q� D q.q�1/�1: Recall that §Œt� D .G�1.t; ª//0l D
G0.ª; t/l:

To obtain (1.52) we used Hoelder’s inequality with d.�/ 2 Lq� ; u.�/ 2 Lq
3

Z ª

t0

hu.s/; d.s/ids � ku.�/kL.p/
q

kd.�/kL.p/

q�

;

with equality if ku.s/kq � ’kd.s/kq�

, u.s/ D
�
’kd.s/kq��q

�1=q

d.s/, for some

constant ’ > 0.

Lemma 1.4.4. The reach set X Œª� under constraint (1.51) is given by
formula (1.52).

In particular, if q D 2, then also q� D 2, we come to the next result.

Corollary 1.4.1. With q D 2 one has (§Œt� is a column vector)

¡.l j X Œª�/ D �

�Z ª

t0

§0Œt �B.t/B 0.t/§Œt �dt

�1=2

C §0Œt0�x0 D �hl; W.ª; t0/li1=2 C l 0c;

(1.53)
with c D G.ª; t0/x0.

Exercise 1.4.3. For the support function

¡.l j X Œª�/ D �hl; W.ª; t0/li1=2 C l 0c; W.ª; t0/ D W.ª; t0/0 > 0;

prove that

X Œª� D fx W h.x � c/; W �1.ª; s/.x � c/i � �g; (1.54)

which is a nondegenerate ellipsoid.

3Instead of the traditional letter p paired with q, we use q�, since p is used to denote for the
dimension of u.
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Calculation of the reach set is more difficult for the bilinear system (1.17), which
with v.s/ D 0 becomes

Px D A.t; u/x: (1.55)

The difficulty is due to the fact that even if u is constrained to a convex compact set
with x0 6D 0 the reach set X Œª� may be nonconvex. This is seen in the next example.

Exercise 1.4.4. Show that the differential inclusion for x 2 R2,

Px1 2 Œ�1; 1�x2; Px2 D 0; t 2 Œ0; 1�;

with X 0 D fx W x0
1 D x1.0/ D 0; x0

2 D x2.0/ 2 Œ�’; ’�; ’ > 0g; has a nonconvex
reach set X Œª� D X .ª; 0; X 0/; ª > 0:

Remark 1.4.2. A more general problem than finding the reach sets X Œt � at time t is
to find reach sets within a given time interval t 2 T . The calculation of such sets,SfX Œt � j t 2 T g, requires more complex operations and is treated in Sect. 2.6 of
Chap. 2.

Exercise 1.4.5. Find a two-dimensional autonomous system Px.t/ D Ax.t/ and a
convex, compact initial set X 0 so that

SfX Œt � j t 2 Œ0; 1�g is not convex.

The next problem is basic. It initiated research in optimal control.

1.4.3 Time-Optimal Control

Problem 1.4.3. Given starting position ft0; x0g and final point xF , find control
u.s/ 2 P .s/; s 2 Œt0; ª� that steers the system from x0 to xF in minimum time,
i.e., ª � t0 is minimized.

We shall solve this problem as follows. Consider the reach set X Œª� D X .ª; t0; x0/

with ª > t0. Assuming xF 6D x0; let us look for the first instant of time ª0 when
xF 2 X Œª�. Namely, denoting the (Euclidean) distance as –.ª/ D d.xF ; X Œª�/, and
assuming –.t0/ > 0, we will find the smallest root ª0 of the equation –.ª/ D 0: Then
ª0 � t0 will be the minimum time.

Taking B.0/ D fx W hx; xi � 1g and expressing xF 2 X Œª� C –B.0/ in terms of
its support function,

hl; xF i � ¡.l j X Œª� C ©B.0// D ¡.l j X Œª�/ C ©hl; li1=2; 8fl W hl; li � 1g;

we find that the distance d.xF ; X Œª�/ D –.ª/ is the smallest © satisfying this
inequality,

–.ª/ D maxfhl; xF i � ¡.l j X Œª�/ j hl; li � 1g: (1.56)
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Hence

ª0 D minfª j –.ª/ D 0g:

Recall that the support function ¡.l j X Œª�/ was calculated earlier (see
Lemma 1.4.2).

Theorem 1.4.1. The minimal time for transferring system (1.44) from starting point
xŒt0� to final point xŒª0� D xF is ª0�t0, where ª0 is the minimal root of the equation
–.ª/ D 0:

Let l0 be the optimizer of problem (1.56) with ª D ª0.

Theorem 1.4.2. The time-optimal control u0.t/; which steers the system from x0 to
point xF satisfies the maximum condition of type (1.50) with l; ul ; t; ª substituted
by l0; u0.t/; t0; ª0 of Problem 1.4.3.

With l0 6D 0 this maximum condition is known as the maximum principle,
discussed in more detail in the next section.

Remark 1.4.3. The optimal time ª0 � t0 may be discontinuous in the boundary
points x0; xF .

Exercise 1.4.6. Construct an example of Problem 1.4.3 for which ª0 � t0 is
discontinuous in both x0; xF .

We shall further deal with various versions of the time-optimal control problem
in detail, when solving specific cases.

In the next section we first introduce the maximum principle for linear systems as
the necessary condition of optimality, then indicate when it is a sufficient condition.
We shall mostly emphasize the nondegenerate case which is the main situation in
applications, the one for which the maximum principle was indeed introduced and
for which the optimal control may be found precisely from this principle. But we
shall also indicate degenerate abnormal or singular situations, which may occur and
for which the maximum principle is noninformative.

1.5 Optimal Open-Loop Control for Linear-Convex
Systems: The Maximum Principle

The necessary conditions for optimality of control problems were formulated by
Pontryagin and his associates in the form of the “Maximum Principle,” [226]. These
conditions apply to a broad class nonlinear systems under nonsmooth constraints
on controls. In the linear case they may be extended to necessary and sufficient
conditions of optimality as indicated in the following text. (See also [30, 81, 120,
195].)



1.5 Optimal Open-Loop Control for Linear-Convex Systems: The Maximum. . . 25

Here we deal with control problems for linear-convex systems, namely those of
type (1.2), with convex constraints on the control. In this section the problems are
solved in the class of open-loop controls UO , with no disturbance term, v.t/ � 0.

Problem 1.5.1. Consider system (1.2), with T D Œt0; ª�. Given starting position
ft0; x0g, find

J .t0; x0/ D min
u

f®.ª; xŒª�/ j x.t0/ D x0g (1.57)

under constraints (1.2), (1.18). Here ®.t; x/ is continuous in ft; xg and convex
in x, bounded from below, with bounded level sets.

The level sets of ®.t; x/ are bounded iff 0 2 int
�

Dom®�.t; �/
�
; 8t 2 T: Recall

that

®.t; x/ D max
l

fhx; li � ®�.t; l/ j l 2 Rng; (1.58)

and ®�.t; l/, the (Fenchel) conjugate of ®.t; x/ in the second variable, is defined by

®�.t; l/ D max
x

fhx; li � ®.t; x/ j x 2 Rng:

The attainability of the maximum is ensured by the properties of ®.t; x/.

1.5.1 The Necessary Conditions of Optimality

Substituting ª for t and xŒª� for x in (1.58) and using the integral representa-
tion (1.3) for xŒª�, we come to

J .t0; x0/ D min
u

max
l

ˆ.u.�/; l j t0; x0/; (1.59)

in which u.t/ 2 P .t/; l 2 Rn and

ˆ.u.�/; l j t0; x0/ D hl; G.ª; t0/x0i C
Z ª

t0

hl; G.ª; s/B.s/u.s/ids � ®�.ª; l/:

In (1.59), the minimization is with respect to u.t/ 2 P .t/. As before, u.�/ D
u.t/; t 2 T , denotes the function u.t/ regarded as an element of an appropriate
function space, which here is L2.T / and P .�/ D fp.�/g is the class of all measurable
functions p.t/ that satisfy p.t/ 2 P .t/ a.e. in T .
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The functional ˆ.u.�/; l j t0; x0/ is concave in l (since ®�.ª; l/ is convex in l)
and linear in u.�/. Since u.�/ belongs to a weakly compact set P .�/ in L2.T /, one
may apply the minmax theorem of Ky Fan [70] and interchange the order of min
and max in (1.59):

J .t0; x0/ D min
u

max
l

ˆ.u.�/; l j t0; x0/ D max
l

min
u

ˆ.u.�/; l j t0; x0/ D max
l

ˆ0.l j t0; x0/;

(1.60)
in which

ˆ0.l j t0; x0/ D h§Œt0�; x0i �
Z ª

t0

¡.�§Œt� j B.t/P .t//dt � ®�.ª; l/: (1.61)

Here §Œt� D §.t; ª; l/ is the solution to the adjoint equation

P§.t/ D �A0.t/§.t/; §.ª/ D l; (1.62)

for system (1.2). The second term in the right-hand side of (1.61) comes from the
relations

min
u

� Z ª

t0

hl; G.ª; s/B.s/u.s/ids ju.�/ 2 P .�/
�

D
Z ª

t0

min
u

fhl; G.ª; s/B.s/ui j u 2 P .s/gds

D �
Z ª

t0

max
u

fh�l; G.ª; t/B.t/ui j u 2 P .s//ds

D �
Z ª

t0

¡.�§Œt� j B.t/P .t//dt: (1.63)

In the above lines the order of operations of min and integration may be
interchanged (see [238, p. 675]).

Let l0 be a maximizer of ˆ0.l j t0; x0/ and let u0.�/ be an optimal control, i.e., a
minimizer of ®.ª; xŒª�/ D maxl ˆ.u.�/; l j t0; x0/:

Recall the definition of saddle point for ˆ.u.�/; l j t0; x0/ D ˆ.u; l/:

Definition 1.5.1. A pair fus; l sg is said to be a saddle point for ˆ.u; l/ if

ˆ.us; l/ � ˆ.us; l s/ � ˆ.u; l s/; 8u; l:

Lemma 1.5.1. The pair .u0.�/; l0/ is a saddle point of ˆ.u.�/; l j t0; x0/ D ˆ.u; l/

and ˆ.u0.�/; l0 j t0; x0/ D ˆ.u0; l0/ D J .t0; x0/:
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Proof. From (1.60) we have

ˆ.u0; l/ � max
l

ˆ.u0; l/ D min
u

max
l

ˆ.u; l/ D J .t0; x0/ D

D max
l

min
u

ˆ.u; l/ D min
u

ˆ.u; l0/ � ˆ.u; l0/;

substituting u D u0 and l D l0 we obtain J .t0; x0/ D ˆ.u0; l0/, from which the
lemma follows. ut

Thus

ˆ.u0; l j t0; x0/ � ˆ.u0; l0 j t0; x0/ D J .t0; x0/ � ˆ.u; l0 j t0; x0/; 8u; l:

(1.64)

Concentrating on the necessary conditions of optimality for the control we first
introduce the next assumption.

Let �0 D minf®.ª; x/ j x 2 Rng:
Assumption 1.5.1. The “regularity condition” �0 < J .t0; x0/ holds.

Lemma 1.5.2. Under Assumption 1.5.1 the maximizer l0 D l0.t0; x0/ 6D 0.

Proof. Indeed, suppose l0 D 0. From (1.60), J .t0; x0/ D �®�.ª; 0/, so that

J .t0; x0/ D �®�.ª; 0/ D � maxf�®.ª; x/ j x 2 Rng D minf®.ª; x/ j x 2 Rng D �0:

contrary to the assumption. ut
This assumption means that xabs D arg minf®.ª; x/ j x 2 Rng, the absolute

minimizer of function ®.ª; x/, does not lie in X Œª� D X .ª; t0; x0/—the reachability
set of system (1.2).

The second inequality in (1.64) is

ˆ.u0.�/; l0 j t0; x0/ � ˆ.u.�/; l0 j t0; x0/; 8u.t/ 2 P .t/: (1.65)

Let §0Œt � D §.t; ª; l0/. Assumption 1.5.1, which we now assume, yields §0Œt � 6� 0

so that the solution of the adjoint equation is nontrivial.
Then, rewriting the inequality of (1.65) in detail, using (1.60)–(1.62) and

omitting similar terms in the left and right-hand sides of this inequality, we arrive at
the relation

Z ª

t0

¡.�§0Œt � j B.t/P .t//dt �
Z ª

t0

�§0Œt �0B.t/u.t/dt; 8u.t/ 2 P .t/:
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Here equality is attained at u0.�/ if and only if for almost all t 2 T the following
pointwise maximum condition holds:

� §0Œt �0B.t/u0.t/ D maxf�§0Œt �0B.t/u j u 2 P .t/g D ¡.�§0Œt � j B.t/P .t//:

(1.66)

The last relation may also be rewritten in the form of a minimum condition:

§0Œt �0B.t/u0.t/ D minf§0Œt �0B.t/u j u 2 P .t/g: (1.67)

Definition 1.5.2. An open-loop control u.t/ 2 P .t/; t 2 T; is said to satisfy the
maximum principle if there exists a nontrivial solution .§0Œt � 6D 0/ of the adjoint
equation (1.62), such that the following conditions hold:

(i) u.t/ satisfies the maximum condition (1.66), where
(ii) vector §0Œª� D l0 is a maximizer of ˆ0.l/ (1.61).

We have thus proved the next result.

Theorem 1.5.1. Under Assumption 1.5.1 every minimizing control u0.t/ of
Problem 1.5.1 satisfies the maximum principle.

Let xu0 D x0Œª� denote the end point at time ª of the trajectory x0Œt � D
x0.t; t0; x0/, emanating from position ft0; x0g under an optimizing control u0.t/ of
the previous theorem. Then, under Assumption 1.5.1, we have

max
l

fhl; xu0i � ®�.ª; l/g D ®.ª; xu0 / D hl0; xu0i � ®�.ª; l0/;

which leads to the next property.

Lemma 1.5.3. An optimal control of Theorem 1.5.1 satisfies the equality

hl0; xu0i D ®.ª; xu0 / C ®�.ª; l0/: (1.68)

This is the transversality condition which allows nonsmooth functions ®.

Corollary 1.5.1. Relation (1.68) is equivalent to condition (ii) in Definition 1.5.2
of the maximum principle.

The proof follows from the definition of the conjugate function.

Lemma 1.5.4. The pair fl0; xu0g of Lemma 1.5.3 satisfies the following relations:

l0 2 @®.ª; xu0 /; and xu0 2 @®�.ª; l0/; (1.69)

where @®.ª; xu0 /; @®�.ª; l0/ are the subdifferentials in the second variable of
®.ª; xu0 / and ®�.ª; l0/ at xu0 and l0:
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If ®.ª; x/ is differentiable in x, we have

l0 D ®x.ª; xu0 / D @®.ª; xu0 /

@x
:

Exercise 1.5.1. Prove Lemma 1.5.4. (See Lemma 1.5.7 below.)

Relations (1.69) are simpler under some additional conditions.

Lemma 1.5.5 ([238], Sect. 11.C). Suppose function ®.x/ is finite, coercive (this
means lim inff®.x/=kxkg ! 1 as kxk ! 1/, and also convex, of class C 2

(twice continuously differentiable) on Rn and its Hessian matrix r2®.x/ is positive
definite for all x. Then its conjugate ®�.l/ satisfies the same properties, namely, it
is also a finite, coercive, convex function of class C 2 on Rn with its Hessian matrix
r2®�.l/ positive definite for every l .

Corollary 1.5.2. Suppose function ®.ª; x/ satisfies conditions of Lemma 1.5.5 in
the second variable. Then relations (1.69) of Lemma 1.5.4 have the form

l0 D ®x.ª; xu0 / D @®.ª; xu0 /

@x
; xu0 D ®�

l .ª; l0/ D @®�.ª; l0/

@l
:

The last corollary indicates when the Fenchel transformation used in this chapter
to calculate the conjugate ®� coincides with the classical Legendre transformation.

1.5.2 Degenerate Cases

The first degenerate case. As we observe, the maximum principle requires
§0Œª� 6D 0: Suppose, however, that §0Œª� D l0 D 0: Then the maximum condition,
which looks like

0 � B.t/u0 D maxf0 � B.t/uju 2 P .t/g;

is degenerate. It is trivially fulfilled, but it is not the maximum principle. The optimal
control then has to be found from considerations other than the maximum principle.
As we shall now observe, this case occurs when Assumption 1.5.1 is not fulfilled.

Example 5.1. For the one-dimensional system

Px.t/ D u.t/; x.0/ > 0; ju.t/j � �; t 2 Œ0; ª�;

consider the problem of minimizing ®.ª; xŒª�/ D 1
2
x2Œª�:
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Fig. 1.2 Example 5.1

Here

max
l

min
u

ˆ.u; l/ D max
l

fl 0x.0/ � �ªjl j � 1

2
hl; li2g D max

l
ˆ0.l/:

Assume �ª � x.0/ > 0. Then ˆ0.l/ < 0; 8l 6D 0; and maxl ˆ0.l/ D ˆ0.l0/ D 0:

Hence

l0 D 0; and max
l

min
u

ˆ.u; l/ D ˆ0 D J .0; x.0// D 0:

The pair l0 D 0 with any u D u0 satisfies the maximum condition but not the
maximum principle. Among these there exists an optimal control u0 which must
satisfy condition

Z ª

0

u.t/dt C x.0/ D 0

This is a singular control which has to be found from conditions other than the
maximum principle (Fig. 1.2).

We shall now see that there is a second degenerate case.
The second degenerate case
This is when §0Œt � 6D 0, but B 0.t/§0Œt � � 0:

Example 5.2. Consider system

Px1 D u; Px2 D u; juj � �; t 2 Œ0; ª�;

so that x 2 R2; u 2 R D R1: Here A D 0; B 0.t/ � b0 D .1; 1/ and the system is
not controllable.
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Take ®.ª; xŒª�/ D 1
2
hxŒª�; xŒª�i and x1.0/ > 0; x2.0/ < 0: We have

ˆ0 D max
l

min
u

ˆ.u; l/ D max
l

min
u

f.l1x1.0/ C l2x2.0// C
Z ª

0
.l1 C l2/u.t/dt � 1

2
hl; lig D

D max
l

f.l1x1.0/ C l2x2.0// � �ªjl1 C l2j � 1

2
hl; lig:

Calculating the maximum in l one may observe that

with l1 C l2 > 0 we have ˆ0 D ˆ0.l0 j 0; x.0// D 1
2
..x1.0/��ª/2 C .jx2.0/jC

�ª/2/;

with l1 C l2 < 0 we have ˆ0 D 1
2
..x1.0/ C �ª/2 C .�jx2.0/j C �ª/2/;

with l1 C l2 D 0 we have ˆ0 D 1
2
.x2

1.0/ C x2
2.0//:

With x1.0/ C x2.0/ D 0; the maximum is attained at l0
1 D x1.0/; l0

2 D x2.0/

and ˆ0 D 1
2
.x2

1.0/ C x2
2.0//:

The optimizing pair is fl0; u0g and the maximum condition

l0b � u0 D max
u

fl0b � u j juj � �g D max
u

f0 � ug D 0 � u0

is degenerate. However, §0Œt � D l0 6D 0 and condition (ii) of Definition 1.5.2,
as well as (1.69) are satisfied. Here the maximum principle is satisfied, with any
ju.t/j � �; which demonstrates that it is a necessary but not a sufficient condition
for optimality. In this example the maximum principle is noninformative. The
optimal control u0 � 0 is a singular control which means it has to be found from
conditions other than the maximum principle (see Remark 1.5.3 below).

A similar situation arises with x1.0/ D 0; x2.0/ < 0: Then with ª� � jx2.0/j=2

ˆ0 D 1

2
hx.ª/; x.ª/i; x.ª/ D x.0/ C bc.u.�//; c.u.�//

D
Z ª

0

u.t/dt; x1.ª/ D �x2.ª/ D x� D �x2.0/=2 > 0:

The optimal control u0 must satisfy c.u0.�// D x�; and with ª� � jx2.0/j=2 it is
singular, while u0.t/ 6D 0: There are many such controls (see Fig. 1.3).

We have thus indicated two types of degenerate problems. A protection from the
first type was ensured by Assumption 1.5.1. A protection from the second type is
ensured by the following assumption.

Let b.i/.t/ be the i -th column of B.t/ and ui the i -th coordinate of u, i D
1; : : : ; p.
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Fig. 1.3 Example 5.2

Assumption 1.5.2. The system (1.44) is strongly completely controllable. This
means that the condition of complete controllability of Corollary 1.3.1 is applicable
to each column b.i/.t/ of B.t/.

This assumption implies that functions §.s; ª; l/0b.i/.s/ 6D 0; 8l 6D 0; 8i D
1; : : : ; n; for almost all t 2 T:

1.5.3 Sufficiency Conditions for Optimality

Some preliminary results

Lemma 1.5.6. Suppose 0 2 intP .t/ � Rp . Then, under Assumption 1.5.2, the
reachability set X Œª� D X .ª; t0; x0/ � Rn has an interior point x0:

Proof. Since P .t/ is continuous, there exists a number © > 0; such that the ball

B©.0/ D fx W hx; xi � ©2g 	 P .t/; 8t 2 Œt0; ª�:

Then ¡.l j P .t// � ©klk; 8t and

¡.l j X .ª; t0; 0// D
Z ª

t0

¡.l jG.ª; s/B.s/P .s//ds � ©

Z ª

t0

kl 0G.ª; s/B.s/kds:

Under the strong controllability condition (see Lemma 1.3.1), we have

Z t2

t1

kl 0G.ª; s/B.s/kds D
Z t2

t1

.l 0D.s/D0.s/l/1=2ds > 0; 8klk 6D 0;
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whatever be Œt1; t2� 	 Œt0; ª�; t1 < t2; and since

min
l

� Z t2

t1

.l 0D.s/D0.s/l/1=2ds j klk D 1

�
> 0;

this proves the lemma. ut
Exercise 1.5.2. Prove that Lemma 1.5.6 is true when intP .t/ 6D ;:

For any l 6D 0 we also have

Z ª

t0

¡.l jG.ª; s/B.s/P .s//ds D
Z ª

t0

maxfl 0G.ª; s/B.s/u.s/ j u.s/ 2 P .s/gds D

D
Z ª

t0

l 0G.ª; s/B.s/u0
l .s/ds > 0; (1.70)

where u0
l .s/ 6D 0; a.e. Thus we came to the next proposition.

Corollary 1.5.3. Under the assumptions of Lemma 1.5.6 the maximum condi-
tion (1.70), taken for any l 6D 0; is achieved only by function u0

l .s/ 6D 0; a.e.

Remark 1.5.1. Note that in Example 5.2, in the absence of controllability, we have
x 2 R2; but the reach set X Œª� is one-dimensional and it has no interior points, but
of course has a nonempty relative interior (see Fig. 1.3).

The Sufficiency Conditions

We shall now indicate, under Assumption 1.5.1, some conditions when the
maximum principle turns out to be sufficient for optimality of the solution to
Problem 1.5.1.

Theorem 1.5.2. Suppose Assumption 1.5.1 is satisfied and the following conditions
for a function u�.t/ are true:

(a) u�.t/ satisfies the maximum principle of Definition 1.5.1 for l0 6D 0—the
maximizer of ˆ0.l/I

(b) u�.t/ satisfies the condition

max
l

ˆ.u�; l j t0; x0/ D max
l

ˆ.u�; l/ D ˆ.u�; l0/ D ˆ.u�.�/; l0 j t0; x0/:

Then u�.t/ is an optimal control of Problem 1.5.1 and J .t0; x0/ D ˆ0.l0/ is the
optimal cost.
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Proof. Denote x0Œª�; x�Œª� to be the vectors generated from xŒt0� D x0 under an
optimal control u0.t/ and under control u�.t/, respectively, with xŒª� being the one
generated from the same point under any admissible control u.t/:

Then, on the one hand, since u�.t/ satisfies condition (a) (the maximum principle
for l0), we have

ˆ.u�.�/; l0/ D h§0Œt0�; x0i C
Z ª

t0

§0Œt �0B.t/u�.t/dt � ®�.ª; l0/ D

D h§0Œt0�; x0i C
Z ª

t0

minf§0Œt �0B.t/u j u 2 P .t/gdt � ®�.ª; l0/ D ˆ.u0.�/; l0/ D

D hl0; x0Œª�i � ®�.ª; l0/ D ®.ª; x0Œª�/;

and on the other, due to condition (b),

ˆ.u�.�/; l0/ D max
l

ˆ.u�; l/ D max
l

fl 0G.ª; t0/x0 C
Z ª

t0

l 0G.ª; t/B.t/u�.t/dt � ®�.ª; l0/g

D max
l

fhl; x�Œª�i � ®�.ª; l/ j l 2 Rng D ®.ª; x�Œª�/;

so that u�.t/ is the optimal control. ut
Remark 1.5.2. Condition (b) of Theorem 1.5.2 may be substituted by the following
equivalent condition.

(b’) u�.t/ generates a trajectory x�Œt � such that l0 2 @®.ª; x�Œª�/:

This statement is proved below, in Lemma 1.5.9.
However, the last theorem does not ensure that the maximum principle is

nondegenerate and may serve to determine the control.

Remark 1.5.3. Indeed, to single out the optimal control u0 � 0 of Example 5.2 from
all the others (recall that there the redundant maximum condition is satisfied by all
the possible controls), one has to apply something else than the maximum principle.
This could be condition (b) of the sufficiency Theorem 1.5.2, which would serve as
a verification test.

Thus, taking control u�.t/ � k 6D 0; x1.0/ D �x2.0/; and calculating

max
l

fhl; x.0/i C k.l1 C l2/ª � 1

2
hl; lig D ®.x�.ª//;

we find

®.x�.ª// D .x1.0/ C k/2 C .x2.0/ C k/2 > ®.x0.ª// D x2
1.0/ C x2

2.0/;

which indicates that the controls u�.t/ � k with k 6D 0 are not optimal, though they
satisfy the maximum condition.
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Theorem 1.5.3. Suppose control u�.t/ satisfies conditions of Theorem 1.5.2 and
the assumptions of Lemma 1.5.6 are satisfied. Then u�.t/ 6D 0 a.e. and it may be
found from the maximum principle which is nondegenerate.

Here is an example where the optimal control in not unique.

Example 5.3. For the two-dimensional system

Px.t/ D u.t/; x.0/ D .1; �2/0; jui .t /j � �; i D 1; 2; t 2 Œ0; ª�;

find the optimal control that minimizes ®.xŒª�/ D maxi jxi .ª/j; i D 1; 2:

Recall that here ®�.l/ D I .l j B�.0//; where B�.0/ D fl W jl1j C jl2j � 1g and
I .l j B/ is the indicator function for set B (as defined in convex analysis), so that
I .l j B/ D 1 if l 2 B and I .l j B/ D C1 otherwise.

We have

ˆ0 D ˆ.u0; l0/ D

D max

�
hl; x.0/i C

Z ª

0
minfhl; u.s/i j ju.s/j � �gds � I .l j B.0//

�
D max

l
ˆ0.l/ D

D max
l

fhl; x.0/i � �.jl1j C jl2j/ª j jl1j C jl2j � 1g D

D maxfhl; x.0/i j jl1j C jl2j � 1g � �ª D max
i

jxi .0/j � �ª:

Taking further ª D 1; � D 1; we have l0 D .0; �1/ 6D 0: (Note that
here Assumptions 1.5.1, 1.5.2 are both satisfied, so that the maximum principle
is nondegenerate.)

The minimum condition gives

minfhl0; u.t/i j ju.t/j � 1g D �.jl0
1 j C jl0

2 j/; u�
1 .t/ 2 Œ�1; 1�; u�

2 .t/ � 1;

where l0 is the maximizer of ˆ0.l/: The maximum principle is thus satisfied with
u�

2 .t/ � 1 and any control u�
1 .t/:

Let us now check condition (b) of Theorem 1.5.2, calculating

max
l

fhl; x.0/i C
Z ª

0

hl; u�.s/ids j jl1j C jl2j � 1g D max
l

ˆ.u�; l/:

This gives, for u�
2 .t/ � 1; and any u�

1 2 Œ�1; 0�; maxl ˆ.u�; l/ D
maxfjx1.1/j; jx2.1/jg D 1; which means all such controls are optimal.

At the same time, for u�
2 .t/ � 1; and any u�

1 2 Œk; 1�; k 2 .0; 1� we have
maxl ˆ.u�; l/ D maxfjx1.1/j; jx2.1/jg � 1 C k > ˆ.u�; l0/ so such controls are
not optimal (Fig. 1.4).
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Fig. 1.4 Example 5.3

The next example illustrates the case when the optimal control is unique.

Exercise 1.5.3. For the two-dimensional system

Px.t/ D u.t/; x.0/ D .1; 0/0; jui .t /j � 1; i D 1; 2; t � 0;

consider the problem of minimizing ®.ª; xŒª�/ D 1
2
kxŒª�k2: For ª < 1, show that

the unique maximizer of ˆ0.l j t0; x0/ is l0 D .1; 0/0. Hence u.t/; t 2 Œ0; ª�,
satisfies the maximum principle iff u1.t/ � �1. The optimal control in addition
satisfies u0

2.t/ � 0. Prove that the optimal control u0
1.t/ � �1; u0

2.t/ � 0 is unique.

It is interesting to observe that the notion of saddle point allows us to give the
following interpretation of sufficiency.

Theorem 1.5.4. Suppose fus.�/; l sg is a saddle point of ˆ.u.�/; l j t0; x0/. Then
us.�/ is an optimal control of Problem 1.5.1 which satisfies the maximum condition
of Definition 1.5.2 with §sŒª� D l s:

Note that Theorem 1.5.4 covers both degenerate cases. If Assumption 1.5.1 is
satisfied, we moreover have l s 6D 0:

Exercise 1.5.4. Prove Theorem 1.5.4.

1.5.4 A Geometrical Interpretation

A geometrical interpretation of the maximum principle and saddle point condi-
tion (1.64) is given in Lemma 1.5.7 and Exercise 1.5.4, and illustrated in Fig. 1.5.



1.5 Optimal Open-Loop Control for Linear-Convex Systems: The Maximum. . . 37

Fig. 1.5 xu0 is the point of
support for X Œª� in direction
�l0 and the set
f®.x/ � ®.xu0 /g in direction
l0

Lemma 1.5.7. Let xu0 D x.ª; t0; x0/ be the state at time ª corresponding to a
control u0. Then l0 satisfies the first inequality in (1.64),

ˆ.u0; l j t0; x0/ � ˆ.u0; l0 j t0; x0/; 8l;

if and only if

®.ª; x/ � ®.ª; xu0 / C hl0; x � xu0i; 8x 2 Rn: (1.71)

If l0 ¤ 0, then xu0 is the point of support for the set fx W ®.ª; x/ � ®.ª; xu0 /g in
direction l0, i.e. l0 2 @®.ª; xu0 /:

Proof. Evidently

hl0; xu0i � ®�.ª; l0/ D ˆ.u0; l0/ D max
l

ˆ.u0; l/ D max
l

fhl; xu0i � ®�.ª; l/g D ®.ª; xu0 /;

is equivalent to

®�.ª; l0/ D hl0; xu0i � ®.ª; xu0 /;

which, since ®�.ª; l0/ D maxxfhl0; xi � ®.ª; x/g, is equivalent to (1.71).
Further on, if ®.ª; x/ � ®.ª; xu0 /, by (1.71) one must have hl0; x � xu0i � 0,

which proves the last assertion. ut
Lemma 1.5.8. Suppose l0 ¤ 0. Then u0 satisfies the second inequality in (1.64),

ˆ.u0; l0 j t0; x0/ � ˆ.u; l0 j t0; x0/; 8u;

if and only if xu0 is the point of support for the reach set X Œª� in direction �l0, i.e.,

hl0; xu0i � hl0; xi; 8x 2 X Œª�:
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Exercise 1.5.5. Prove Lemma 1.5.8.

The next lemma can be used to verify whether a proposed control is indeed optimal.

Lemma 1.5.9. Let x0.ª/ be the state at time ª corresponding to control u0 and
l0 2 @®.ª; xu0 /. Then u0 is optimal if it satisfies the maximum principle of
Definition 1.5.2.

Proof. By (1.71), for any x.ª/ 2 Rn; we have

hl0; x.ª/ � x0.ª/i � 0 ) ®.ª; x.ª// � ®.ª; x0.ª//I

and by Lemma 1.5.8 (the maximum principle in the form of a minimum rule),

x.ª/ 2 X Œª� ) hl0; x.ª/ � x0.ª/i � 0I

whence

x.ª/ 2 X Œª� ) ®.ª; x.ª// � ®.ª; x0.ª//;

so u0 is optimal. ut
Remark 1.5.4. Be careful, since, as indicated in Examples 5.1 and 5.2, the control
u0 of Lemma 1.5.9 may turn out to be singular and the maximum principle for u0

may be degenerate.

1.5.5 Strictly Convex Constraints on Control

Recall that a compact set P is said to be strictly convex, if its boundary @P does not
contain any line segment. That is, if p0; p00 2 @P , then œp0 C.1�œ/p00 62 @P ; 8œ 2
.0; 1/:

Strictly convex sets may be presented as level sets of strictly convex functions.
A function ®.x/ is strictly convex in the convex domain D if for points p0; p00 2 D
one has

®.œp0 C .1 � œ/p00/ < œ®.p0/ C .1 � œ/®.p00/; 8œ 2 .0; 1/:

Note that the inequality here is strict.4

Lemma 1.5.10. Suppose the function ®.ª; x/ is strictly convex in x. Then the
maximizer l0 of ˆ0.l j t0; x0/ is unique.

4Recall that here, as mentioned in Sect. 1.2, set P .t/ is assumed to have an interior point for all t:
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Exercise 1.5.6. Prove Lemma 1.5.2.

An example of a strictly convex function is the strictly positive quadratic function
®.x/ D hp � a; P.p � a/i with P D P 0 > 0.

Denote a degenerate ellipsoid as

E.p�; P / D fp W hp � p�; P �1.p � p�/i � 1g; P D P 0 > 0:

Here p� is the center and P is the shape matrix.
Another example is as follows. Take the function ®.x/ D d 2.x; E.0; P //; P D

P 0 > 0; and a ray fx D ’h; h 62 E.0; P / ’ > 0g; with scalar ’. Then function
f .’/ D ®.’h/ defined for ’ > 1 will be strictly convex. (Prove this.)

The constraint on u may also be strictly convex.

Lemma 1.5.11. Suppose d 6D 0 and P is strictly convex. Then the maximizer u0 of
the problem

maxfhd; ui j u 2 P g D hd; u0i

is unique.

Lemma 1.5.12. Suppose the continuous function d.t/ 6D 0 almost everywhere in
T and function P .t/ is Hausdorff-continuous with values in strictly convex compact
sets. Then the optimizer u0.t/ to

hd.t/; u0.t/i D maxfhd.t/; ui j u 2 P .t/g

is unique and integrable.

Exercise 1.5.7. Prove Lemmas 1.5.11, 1.5.12.

An example of a strictly convex set P is the nondegenerate ellipsoid, P D
E.p�; P /:

Another example is the intersection of m nondegenerate ellipsoids: \m
iD1E.0; Pi /;

Pi > 0; Pi D P 0
i : (Prove this.)

Lemmas 1.5.10–1.5.12 imply the following assertion.

Theorem 1.5.5. Suppose Assumptions 1.5.1 and 1.5.2 hold, the sets P .t/; t 2 T;

are strictly convex and the function ®.ª; x/ is strictly convex in x. Then the optimal
control u0.t/ of Problem 1.5.1 is unique.

Before completing this section we emphasize that finding the optimal control
under hard bounds requires one to solve optimization problems contained in the
maximum principle of type (1.50) or (1.66). These problems involve calculating a
support function in the following form.

Problem 1.5.2. Given vector d and convex compact set P in Rp , find

¡.d j P / D maxfhd; ui j u 2 P g D hd; u0i: (1.72)
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This optimization problem is easily solved if P is defined by a standard norm in the
space lq W P D fu W kuk � �g: For example,

• if q D 1, kuk D Pk
iD1 jui j and u0 D .0; : : : ; � sgndj ; : : : ; 0/0; j D

arg maxfjdi j; i D 1; : : : ; kg;
• if q D 2, kuk D

�Pk
iD1 jui j2

�1=2

and u0 D � d.hd; d i/�1=2;

• if q D 1, kuk D maxfjui j j i D 1; : : : ; kg and u0
i D � sgndi ; i D 1; : : : ; k:

Exercise 1.5.8. Solve Problem 1.5.2 for

• (i) P D fu W hu � a; P.u � a/i1=2 � �; P D P 0 > 0g:
• (ii) P D fu W

�Pk
iD1.ui � ai /

q

�1=q

� �g, with q 2 .2; 1/:

for given vector a.

Summarizing this section we observe that the solution to the primal Problem 1.5.1
of optimal control was reduced to the dual optimization problem of maximizing the
dual cost functional ˆ0.l j t0; x0/. The dual problem leads us to a crucial element
of the solution—the vector §.ª/ D l0 that uniquely defines the trajectory §Œt� D
§.t; ª; l0/ of the adjoint equation (1.61) which, in its turn, determines the optimal
control itself through the maximum principle.

In general, the dual problem for optimization under constraints is simpler than
the primal problem. This justifies its usefulness. In most problems in the forthcom-
ing sections the primal problem is to minimize a cost over a class of functions (the
controls), while the dual problem is one of finite-dimensional optimization with
either no constraints at all, or with simpler ones.

In this section the properties of system linearity and convexity of the constraints
and of the “cost function” (the performance index) allowed us to indicate assump-
tions which allow the maximum principle to be not only a necessary condition of
optimality (as in the general case), but also a sufficient condition.

A natural move is to apply the techniques of convex analysis and its duality
methods used above to other types of optimal control problems in “linear-convex”
systems. This is done in the next section.

1.6 Duality Methods of Convex Analysis in Problems
of Optimal Control

In the investigation of optimization problems the notion of convexity turned out to
be extremely important. This resulted in the development of convex analysis, with
pioneering work by Fenchel, [73,74] Moreau, [217], and Rockafellar, [237,238], see
also [48, 99, 227]. One of the key elements here is in introducing dual optimization
problems solving which sometimes simplifies the optimization procedure.
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1.6.1 The Primal and Dual Optimization Problems

In this section we elaborate further on the reduction of linear-convex problems of
optimal control to respective dual problems of optimization.

Problem 1.6.1. Consider system (1.2) with T D Œt; ª�. Given starting position
ft; xg, find

J .t; x/ D min
u

� Z ª

t

.®1.s; H.s/xŒs�/ C ®2.s; u.s///ds C ®.ª; xŒª�/

�
; (1.73)

along the trajectories xŒs� D x.s; t; x/ of system (1.2).
The m � n matrix H.s/ is continuous; ®1.t; z/; ®.ª; x/; ®2.t; u/ are continuous

in t and convex in z 2 Rm, x 2 Rn, and u 2 Rp , respectively, and assumed to have
bounded level sets.

Note that there are no bounds on u; x. In convex analysis ®1.t; z/; ®.t; x/; ®2.t; u/

are called normal integrands, [238].
However, boundedness of the level sets is equivalent to Assumption 1.6.1 which

we further presume to hold without additional reference.

Assumption 1.6.1. The following inclusions are true

0 2 intDom®�
1 .t; �/; 0 2 intDom®�.ª; �/; 0 2 intDom®�

2 .t; �/:

Here and in the sequel all conjugates ®�; ®�
i and all sets Dom.�/ are taken

with respect to the second variable unless otherwise indicated. Next, we reduce
Problem 1.6.1 to a dual problem of optimization. We first rewrite functions
®1.t; z/; ®.t; x/; ®2.t; u/ in terms of their conjugates:

®1.s; H.s/xŒs�/ D max
œ

fhœ.s/; H.s/xŒs�i � ®�
1 .s; œ.s// j œ.s/ 2 Rmg; (1.74)

®.ª; xŒª�/ D max
l

fhl; xŒª�i � ®�.ª; l/ j l 2 Rng; (1.75)

®2.s; u/ D max
p

fhp.s/; ui � ®�
2 .s; p.s// j p.s/ 2 Rpg: (1.76)

Using formula (1.3), substitute for xŒs�; xŒª� first in (1.74) and (1.75), and
then substitute these results into (1.73). This leads to the following problem of
minimaximization:

J .t; x/ D min
u

max
l;œ

ˆ.u.�/; l; œ.�/ j t; x/; (1.77)
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in which the variables range over u.s/ 2 Rp; œ.s/ 2 Rm; s 2 Œt; ª�, and l 2 Rn,
and

ˆ.u.�/; l; œ.�/ j t; x/ D hl; G.ª; t/xi C
Z ª

t
hl; G.ª; Ÿ/B.Ÿ/u.Ÿ/idŸ � ®�.ª; l/C

C
Z ª

t

��
œ.s/; H.s/G.s; t/xCH.s/

Z s

t
G.s; Ÿ/B.Ÿ/u.Ÿ/dŸ

	
�®�

1 .s; œ.s//C®2.s; u.s//

�
ds:

(1.78)

We now introduce a new adjoint system for Problem 1.6.1,

P§.s/ D �A0.s/§.s/ � H 0.s/œ.s/; §Œª� D l: (1.79)

Its trajectory §Œt� D §.t; ª; l/ is described by an integral formula analogous
to (1.3),

§Œt� D G0.ª; t/l C
Z ª

t

G0.s; t/H 0.s/œ.s/ds; (1.80)

with G.s; t/ defined by (1.4), (1.5).
Interchanging the order of integration in the second integral transforms (1.78)

into

ˆ.u.�/; l; œ.�/ j t; x/

D h§Œt�; xi C
Z ª

t

�
§ŒŸ�0B.Ÿ/u.Ÿ/ C ®2.Ÿ; u.Ÿ// � ®�

1 .Ÿ; œ.Ÿ//

�
dŸ � ®�.ª; l/:

The functional ˆ.u.�/; l; œ.�/ j t; x/ is convex in u and concave in fl; œ.�/g.
Since we assumed 0 2 intDom®�

u .s; �/; we observe that

®�
2 .s; p/ D max

u
fhp; ui � ®2.s; u/g D � min

u
f�hp; ui C ®2.s; u/g;

which yields

min
u

®2.s; u/ D �®�
2 .s; 0/:

The last equality indicates that the minimizing set

U0.s/ D fu W u 2 arg min ®2.s; u/g

is bounded for each s 2 T D Œt; ª�. Together with the continuity of ®2.s; u/

in s this yields the Hausdorff-continuity of U0.s/, which means that in the
minimaximization (1.77) the functions u.s/ may be selected in a weakly compact
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subset set of L2ŒT �. The last fact allows us to apply Ky Fan’s minmax theorem
to (1.77), which yields

J .t; x/ D min
u

max
l;œ

ˆ.u.�/; l; œ.�/ j t; x/ D max
l;œ

min
u

ˆ.u.�/; l; œ.�/ j t; x/

D max
l;œ

ˆ0.l; œ.�/ j t; x/; (1.81)

in which

ˆ0.l; œ.�/ j t; x/ D h§Œt�; xi�
Z ª

t

�
®�

2 .s; �B 0.s/§Œs�/C®�
1 .s; œ.s//

�
ds�®�.ª; l/:

(1.82)
Here we have used the relations

min
u.�/

Z ª

t

.§Œs�0B.s/u.s/C®2.s; u.s///ds D
Z ª

t

min
u

.§Œs�0B.s/u.s/C®2.s; u.s///ds D

D
Z ª

t

.�®�
2 .s; �B 0.s/§Œs�/ds: (1.83)

In summary we have two optimization problems: the Primal and the Dual.
Primal Problem: Find the optimal control u0.s/; s 2 Œt; ª� that minimizes the

primal functional

….t; x; u/ D
Z ª

t

.®1.s; H.s/xŒs�/ C ®2.s; u.s///ds C ®.ª; xŒª�/;

along trajectories of the primal system

Px D A.s/x C B.s/u C v.s/; s 2 Œt; ª�; (1.84)

with given starting position ft; xg; x.t/ D x, so that

J .t; x/ D min
u

f….t; x; u/ j u 2 Rn; (1.84)g:

Dual Problem: Find the optimal pair fl; œ.s/; s 2 Œt; ª�g that maximizes the
dual functional

ˆ0.l; œ.�/ j t; x/ D h§Œt�; xi�
Z ª

t

�
®�

2 .s; �B 0.s/§Œs�/C®�
1 .s; œ.s//

�
ds�®�.ª; l/;

along the trajectories of the dual (adjoint) system

P§.s/ D �A0.s/§.s/ � H 0.s/œ.s/;

with boundary value §.ª/ D l , (§ is a column vector).



44 1 Linear Control Systems

The attainability of the maximum in fl; œ.�/g in (1.81), (1.82) and of the
minimum in u.�/ in (1.83) is ensured by Assumption 1.6.1. This pointwise min-
imaximization in u.s/; œ.s/; s 2 Œt; ª� with a further maximization in l yields
functions u0.s/; œ0.s/ and also a vector l0. The indicated optimizers need not
be unique. However, due to the properties of systems (1.2), (1.79) and functions
®1.t; x/; ®.t; x/; ®2.t; u/, there always exists a pair of realizations u0.s/; œ0.s/ that
are integrable and, in fact, may even turn out to be continuous.

Exercise 1.6.1. Prove the existence of integrable realizations u0.s/; œ0.s/; s 2
Œt; ª�, for the optimizers of (1.81)–(1.83).

Exercise 1.6.2. Prove that whatever be l0 6D 0; one has §.t/ 6� 0; t 2 Œt0; ª�;

whatever be œ.t/:

The relations above indicate the following necessary conditions of optimality of
the control realization u0.s/; s 2 Œt; ª�.

Theorem 1.6.1. Suppose u0.t/ is the optimal control for Problem 1.6.1 and
fl0; œ0.�/g are the optimizers of the dual functional ˆ0.l; œ.�/ j t; x/ that generate
the solution §0Œs� D §.s; ª/ under l D l0; œ.�/ D œ0.�/. Then u0.t/ satisfies the
following pointwise minimum condition

§0Œs�0B.s/u0.s/C®2.s; u0.s// D min
u

f§0Œs�0B.s/uC®2.s; u/ j u 2 Rpg; s 2 Œt; ª�;

(1.85)
which is equivalent to the pointwise maximum condition

� §0Œs�0B.s/u0.s/ � ®2.s; u0.s// D max
u

f�§0Œs�0B.s/u � ®2.s; u/ j u 2 Rpg

D ®�
2 .s; �B 0.s/§0Œs�/; s 2 Œt; ª�; (1.86)

producing with l0 6D 0 the maximum principle.

In order to ensure conditions l0; œ0 6D 0 we will need some additional
assumptions. Let

�0.t; x/ D ˆ0.0; 0 j t; x/ D �
Z ª

t

�
®�

2 .s; 0/ C ®�
1 .s; 0/

�
ds � ®�.ª; 0/ D J0.t; x/:

Assumption 1.6.2. The inequality �0.t; x/ D J0.t; x/ < J .t; x/ is true.

Lemma 1.6.1. Under Assumption 1.6.2 the maximizer fl0; œ0.�/g 6D 0.

Denote

�1.t; x/ D maxfˆ0.l; 0 j t; x/ j l 2 Rng;
�2.t; x/ D maxfˆ0.0; œ.�/ j t; x/ j œ.�/ 2 L2.T /g:
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Assumption 1.6.3. The following inequalities hold:

.i/ �1.t; x/ < J .t; x/; .i i/ �2.t; x/ < J .t; x/:

Lemma 1.6.2. (a) Suppose Assumption 1.6.3(i) holds. Then l0 6D 0:

(b) Suppose Assumption 1.6.3(ii) holds. Then œ0.�/ 6D 0:

Exercise 1.6.3. Prove Lemma 1.6.2.

Assumption 1.6.4. (i) Functions ®1.t; z/; ®.t; x/ are strictly convex in z; x and
continuous in t .

(ii) Function ®2.t; u/ is strictly convex in u and continuous in t .

Lemma 1.6.3. Suppose Assumption 1.6.4(i) is true. Then the optimizers fl0; œ0.�/g
is unique.

Exercise 1.6.4. Prove Lemma 1.6.3.

Lemma 1.6.4. Under the boundedness of level sets for ®1.t; H.t/x/; ®.t; x/;

®2.t; u/ and with a given nonzero optimizer fl0; œ0.�/g one has the inclusion

� B 0.s/§0Œs� 2 int Dom®�
2 .s; �/; s 2 T: (1.87)

Proof. Indeed, if inclusion (1.87) does not hold, it would contradict the assumption
that fl0; œ0.�/g 6D 0: This could be checked by direct substitution. ut

Note that inclusion (1.87) is also the necessary and sufficient condition for the
level sets of the function

§0Œs�0B.s/u C ®.s; u/

to be bounded and hence for the attainability of the minimum in u in (1.85) (which
is also the maximum in (1.86)) for s 2 T .

Lemma 1.6.5. Under the assumptions of Lemma 1.6.4 the minimum in (1.85) is
attained and the minimizer u0.s/; s 2 T; may be selected as a piecewise continuous
realization.

This brings us to the sufficient conditions for optimality of the control realization
u0.s/; s 2 Œt; ª�.

Theorem 1.6.2. Suppose Assumptions 1.6.2, 1.6.3(i) are true, the requirements of
Lemma 1.6.4 hold and

(i) a control u�.s/; s 2 T , satisfies the maximum principle (1.86), with fl0 6D 0;

œ0.t/ 6D 0g as the maximizer for the Dual Problem,
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(ii) the equality

max
l;œ

ˆ.u�.�/; l; œ.�/ j t; x/ D ˆ.u�.�/; l0; œ0.�/ j t; x/

is true.

Then u�.s/; s 2 T , is the optimal control for the Primal Problem.

Proof. The proof is similar to that of the previous section (see Theorem 1.5.2). ut
An additional requirement for functions ®1.t; z/; ®.t; x/; ®2.t; u/ to be strictly

convex in z; x and u results in the uniqueness of the optimal control.

Theorem 1.6.3. Suppose under the conditions of Theorem 1.6.2 Assumption 1.6.4
is also true. Then solutions u0.s/; and fl0; œ0.s/g to both Primal and Dual Problems
are unique.

Exercise 1.6.5. Suppose that functions ®1.t; z/; ®.t; x/; ®2.t; u/ are quadratic
forms in z and u:

®1.t; z/ D 1

2
hz; M.t/zi; ®.t; x/ D 1

2
hx � m; L.x � m/i; ®2.t; u/ D 1

2
hu; N.t/ui;

with z D Hx; M.t/ D M 0.t/ > 0; N.t/ D N 0.t/ > 0; L D L0 > 0, so that

J .t; x/ D min
u

� Z ª

t

1

2
.hH.s/xŒs�; M.s/H.s/xŒs�i C hu.s/; N.s/u.s/i/dsC

C 1

2
hxŒª� � m; L.xŒª/ � m�i j u.�/ 2 L2ŒT �

�
: (1.88)

(i) Solve the linear-quadratic problem (1.88) by duality theory of this subsection.
(ii) Solve the same problem through methods of classical variational calculus.

1.6.2 General Remark: Feedforward Controls

Problem 1.5.1 of open-loop optimal control was solved in Sect. 1.5 for a fixed
starting position ft0 D t; x0 D xg with solution given as an optimal cost J .t0; x0/

under control u0.Ÿ/ D u0.Ÿ j t0; x0/; Ÿ 2 Œt0; ª�; in the class u0.�/ 2 UOO:

Now, solving this problem of feedforward control for any interval Œt; ª� and any
starting position ft; xg; such solution may be used to create a model-predictive
control uf .t; x/ D u0.t j t; x/ which will be a function of ft; xg: However, such
moves require a more general approach to variational problems of control that would
indicate solutions of the same problem in the class UCC of closed-loop control
strategies. Such are the Dynamic Programming techniques discussed in Chap. 2.



Chapter 2
The Dynamic Programming Approach

Abstract This chapter describes general schemes of the Dynamic Programming
approach. It introduces the notion of value function and its role in these schemes.
They are dealt with under either classical conditions or directional differentiability
of related functions, leaving more complicated cases to later chapters. Here the
emphasis is on indicating solutions to forward and backward reachability problems
for “linear-convex” systems and the design of closed-loop control strategies for
optimal target and time-optimal feedback problems.

Keywords Dynamic programming • Value function • HJB equation • Reach-
ability • Linear-convex systems • Colliding tubes • Terminal control • Time-
optimal control

Dynamic Programming techniques provide a powerful conceptual and computa-
tional approach to a broad class of closed-loop optimal control problems. They
are an application of the Hamiltonian formalism developed in calculus of varia-
tions and analytical dynamics [29, 33, 87, 269] to problems of feedback control
using Hamilton–Jacobi–Bellman (HJB) equations also known as the Dynamic
programming equations [16, 22, 24]. We start with the case when these partial
Differential equations can be solved under either classical conditions that presume
differentiability of value functions, or those where the value function is convex in
the state variables and hence allows their directional differentiability.1 The emphasis
here is on linear-convex systems. For these systems it is not necessary to integrate
the HJB equations since, as indicated here, the value function may be calculated
through methods of convex analysis. These methods also apply to the calculation of
support functions for the forward and backward reachability sets. The latter case is
also useful for calculating feedback controls.

Note that Sects. 2.1, 2.3, 2.7, 2.8 of this chapter are applicable not only to linear
systems but to nonlinear systems as well.

1The general nondifferentiable case for the value function is discussed later in Sect. 5.1.
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2.1 The Dynamic Programming Equation

Consider system (1.1) expressed as

Px D f .t; x; u/; u 2 U.t/; t 2 Œ£; ª� D T£; x 2 Rn; u 2 Rp (2.1)

with starting position f£; xg; x.£/ D x: Here we have either U.t/ D Rp or
U.t/ D P .t/, where P .t/ is compact-valued and Hausdorff-continuous.

The control will be sought for as either open-loop u.t/; u.�/ 2 UO , or closed-
loop u.t; x/; u.�; �/ 2 UC :

We wish to find the optimal control u that minimizes the Mayer–Bolza functional
of the general form

J .£; x j u.�// D
ªZ

£

L.t; xŒt �; u.t//dt C ®.ª; xŒª�/: (2.2)

In (2.2) ª is a fixed terminal time, and xŒt � D x.t; £; x/ is the trajectory of (2.1)
starting from initial position f£; xg. It is customary to call L.t; x; u/ the running
cost and ®.ª; x/ the terminal cost. To begin, we suppose that the functions L; ® are
differentiable and additional conditions are satisfied that justify the mathematical
operations considered in this section. We will explicitly specify these conditions
later.

Definition 2.1.1. The value function for the problem of minimizing (2.2) is
defined as

V.£; x£/ D inf
u.�/

0
@

ªZ

£

L.t; xŒt �; u.t//dt C ®.ª; xŒª�/

ˇ̌
ˇ̌ u.�/ 2 U.�/; xŒ£� D x£

1
A ;

(2.3)

where U.�/ D fu.�/ W u.t/ 2 U.t/; t 2 T£g:
Thus V.£; x£/ is the infimum of the cost (2.2) incurred by any feasible control u.�/ 2
U.�/ and starting in state xŒ£� D x£. For any u.t/ 2 U.t/ and resulting trajectory
xŒt � D x.t; £; x£/ we must have

V.£; x£/ �
¢Z

£

L.t; xŒt �; u.t//dt C
0
@

ªZ

¢

L.t; xŒt �; u.t//dt C ®.ª; xŒª�/

1
A ;
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for £ < ¢ < ª. Minimizing the second term with respect to u gives

V.£; x£/

�
¢Z

£

L.t; xŒt �; u.t//dt

C inf

8<
:

ªZ

¢

L.t; xŒt �; u.t//dt C ®.ª; xŒª�/

ˇ̌
ˇ̌ u.�/ 2 U.�/; xŒ¢� D x.¢; £; x£/

9=
;

D
¢Z

£

L.t; xŒt �; u.t//dt C V.¢; x.¢//: (2.4)

On the other hand, since V.£; x£/ is the infimum, for each © > 0 there exists Qu.�/
such that

V.£; x£/ C © � J .£; x j Qu.�//

�
¢Z

£

L.t; QxŒt �; Qu.t//dt

C inf

0
@

ªZ

¢

L.t; xŒt �; u.t//dt C ®.ª; x.ª//

ˇ̌
ˇ̌ u.�/ 2 U.�/; QxŒ¢� D Qx.¢; £; x£/

1
A

D
¢Z

£

L.t; QxŒt �; Qu.t//dt C V.¢; QxŒ¢�/; (2.5)

with QxŒt � D Qx.t; £; x£/ being the trajectory resulting from control Qu.t/. From (2.4)
and (2.5)

V.£; x£/ �
¢Z

£

L.t; QxŒt �; Qu.t//dt C V.¢; QxŒ¢�/ � V.£; x£/ C ©:

Letting © ! 0 leads to the Dynamic Programming Equation

V.£; x£/ D inf

0
@

¢Z

£

L.t; xŒt �; u.t//dt C V.¢; xŒ¢�/

ˇ̌
ˇ̌ u.�/ 2 U.�/

1
A : (2.6)
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Denote by V.t; x j ª; ®.ª; �// the value function for the problem to minimize (2.2)
with terminal cost ®.ª; �/ (and the same running cost). With this notation, the value
function (2.3) is V.t; x j ª; ®.ª; �// and the terminal cost serves as the boundary
condition

V.ª; x j ª; ®.ª; �// D ®.ª; �/: (2.7)

Lastly, recognizing the right-hand side of (2.6) as the value function for the
problem with terminal cost V.¢; �/ allows us to express (2.6) as the Principle of
Optimality:

V.£; x j ª; V .ª; �// D V.£; x j ¢; V .¢; � j ª; V .ª; �///; £ � ¢ � ª: (2.8)

Observe that (2.8) is the semigroup property for the mapping V.£; �/ 7! V.ª; �/:
Substituting t for £, t C ¢ for ¢ and s for t , rewrite (2.6) as

V.t; x/ D inf

0
@

tC¢Z

t

L.s; xŒs�; u.s//ds C V.t C ¢; xŒt C ¢�/

ˇ̌
ˇ̌ u.�/ 2 U.�/

1
A :

(2.9)

Here ¢ � 0 and xŒs� D x.s; t; x/ is the trajectory of (2.1) starting from ft; xg. For
¢ � 0, (2.9) can be written as

inf

8<
:

tC¢Z

t

L.s; xŒs�; u.s//ds C V.t C ¢; xŒ£ C ¢�/ � V.t; x/

ˇ̌
ˇ̌ u.�/ 2 U.�/

9=
; D 0;

and so

lim
¢!C0

inf

0
@ 1

¢

tC¢Z

t

L.s; xŒs�; u.s//ds C V.t C ¢; xŒt C ¢�/ � V.t; x/

¢

ˇ̌
ˇ̌ u.�/ 2 U.�/

1
A D 0:

(2.10)

Suppose now that V.t; x/ is continuously differentiable at .t; x/. Then reversing the
order of the operations lim and inf and passing to the limit with ¢ ! C0, we get

inf
u

�
L.t; xŒt �; u/ C dV.t; xŒt �/

dt

ˇ̌
ˇ̌ u 2 U.t/

�
D 0: (2.11)

Expanding the total derivative dV.t; xŒt �/=dt in terms of partial derivatives and
noting that @V.t; xŒt �/=@t does not depend on u, (2.11) may be rewritten as

@V.t; x/

@t
C inf

��
@V.t; x/

@x
; f .t; x; u/

	
C L.t; x; u/

ˇ̌
ˇ̌ u 2 U.t/

�
D 0; (2.12)
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with boundary condition (2.7). This partial differential equation is known as the
(backward) Hamilton–Jacobi–Bellman equation or simply the HJB equation. It is
“backward” because the boundary condition (2.7) is at the terminal time; the
“forward” HJB equation has boundary condition at the initial time.

Lemma 2.1.1. If the value function V.t; x/ given by (2.3) is differentiable, it
satisfies the HJB equation (2.12) with boundary condition (2.7).

Exercise 2.1.1. Justify the reversal of lim and inf in (2.10).

Theorem 2.1.1. (i) Suppose the value function V.t; x/ for problem (2.3) is differ-
entiable at point ft; xg. Then it satisfies the inequality

@V.t; x/

@t
C infw

��
@V.t; x/

@x
; f .t; x; w/

	
C L.t; x; w/ j w 2 UŒt �

�
� 0:

(2.13)

(ii) If in addition to (i) there exists an optimal control u0.s/ 2 U.s/, such that
u0.s/ ! w0 2 U.t/ as s ! t C 0, then

@V

@t
C
�
@V.t; x/

@x
; f .t; x; w0/

	
C L.t; x; w0/ D 0: (2.14)

Theorem 2.1.2 (The First Verification Theorem). Suppose a differentiable func-
tion ¨.t; x/ satisfies the HJB equation (2.12) in domain D D T£ � Rn together
with boundary condition (2.7). Then in this domain ¨.t; x/ � V.t; x/. Moreover, if
control u0.�/, with trajectory xŒs� D x0.s; t; x/; s � t; x0Œt � D x, satisfies

L.s; x0Œs�; u0.s// C
�
@¨.s; x0Œs�/

@x
; f .s; x0Œs�; u0.s//

	
D

D min

�
L.s; x0Œs�; u/ C

�
@¨.s; x0Œs�; u/

@x
; f .s; x0Œs�; u/

	
j u 2 U.s/

�
; (2.15)

then u0.�/ is optimal and ¨.t; x/ D V.t; x/.

Proof. Let u.�/ 2 U.�/ be any control and xŒs� D x.s; t;x/ the resulting trajectory
starting at xŒt � D x. From (2.12),

¨.ª; xŒª�/ � ¨.t; x/ D
Z ª

t

�
@¨.s; x.s//

@s
C
�
f .s; x.s/; u.s//;

@¨.s; x.s//

@x

	�
ds �

� �
Z ª

t

L.s; x.s/; u.s//ds:
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Since ¨.ª; x.ª// D ®.ª; xŒª�/, moving the integral to the left side of the last
relation gives

¨.t; x/ �
Z ª

t

L.s; x.s/; u.s//ds C ®.ª; xŒª�/ D J .t; x j u.�//:

Hence ¨.t; x/ � V.t; x/:

Repeating this calculation for u D u0.�/, but using (2.15) instead of (2.12), yields
¨.t; x/ D J .t; x j u0.�//, which implies that ¨.t; x/ D V.t; x/ and u0.�/ is optimal.

ut
Definition 2.1.2. A control in the form u.t; x/ is called a closed-loop or feedback
control. It is sometimes known as positional control. A control u D u.t/ that is a
function only of time is an open-loop control.

Corollary 2.1.1. The optimal feedback (closed-loop) control for problem (2.3) is
given by

u0.t; x/ 2 arg min

��
@V

@x
; f .t; x; u/

	
C L.t; x; u/

ˇ̌
ˇ̌ u 2 U.t/

�
: (2.16)

Remark 2.1.1. Formally, given a closed-loop control u0.t; x/, one may find the
corresponding open-loop control u0 D u0Œs� by first obtaining the solution xŒs� D
x.s; t; x/ of the differential equation

Px D f .s; x; u0.s; x//; xŒt � D x; (2.17)

and then substituting to get u0Œs� D u0.s; xŒs�/: However, one must ensure
that (2.17) has a solution in some reasonable sense, particularly, when the
feedback control u0.s; x/ is nonlinear (even discontinuous) in x, but the original
system is linear in x.

Consider now the problem of finding u that minimizes the inverse Mayer–Bolza
functional

J0.t; x j u.�// D ®.t0; x.t0// C
tZ

t0

L.s; x.s/; u.s//ds; (2.18)

with given final position ft; xg; xŒt � D x; and initial time t0 � t: The value function
for this problem is

V0.t; x/ D inf
u.�/fJ0.t; x j u.�// j u.�/ 2 U.�/; x.t/ D xg: (2.19)
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Mimicking the previous argument now leads to the Dynamic Programming Equation

V0.t; x/ D inffV0.t �¢; xŒt �¢�/C
Z t

t�¢

L.s; xŒs�; u.s//ds j u.�/ 2 U.�/; x.t/ D xg;

from which, supposing V0.t; x/ is differentiable, one obtains the forward HJB
equation

@V0

@t
.t; x/ C sup

��
@V0.t; x/

@x
; f .t; x; u/

	
� L.t; x; u/

ˇ̌
ˇ̌ u 2 U.t/

�
D 0; (2.20)

with boundary condition

V0.t0; x/ D ®.t0; x/: (2.21)

The Principle of Optimality in forward time now has the form

V0.t; x j t0; V0.t0; �// D V0.t; x j £; V0.£; � j t0; V0.t0; �///; t0 � £ � t: (2.22)

Exercise 2.1.2. Derive the Dynamic Programming Equation in forward time and
then the forward HJB equation (2.20).

Theorem 2.1.3 (The Second Verification Theorem). Suppose a differentiable
function ¨0.t; x/ satisfies the HJB equation (2.20) in domain D D Tt0 �Rn; together
with boundary condition (2.21). Then in this domain ¨0.t; x/ � V0.t; x/. Moreover,
if control u0.�/, with trajectory x0Œs� D x0.s; t; x/; x0Œt � D x; s � t , satisfies

�L.s; x0Œs�; u0.s// C
�
@¨0

@x
.s; x0Œs�/; f .s; x0Œs�; u0.s//

	
D

D max

�
�L.s; x0Œs�; u/ C

�
@¨0

@x
.s; x0Œs�; u/; f .s; x0Œs�; u/

	 ˇ̌
ˇ̌ u 2 U.s/

�
;

(2.23)

then u0.�/ is optimal and ¨0.t; x/ D V0.t; x/.

Exercise 2.1.3. Prove Theorem 2.1.3.

Corollary 2.1.2. The optimal feedback (closed-loop) control for problem (2.19) is

u0.t; x/ 2 Arg max

��
@V0

@x
; f .t; x; u/

	
� L.t; x; u/

ˇ̌
ˇ̌ u 2 U.t/

�
: (2.24)
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Remark 2.1.2. The optimal closed-loop control u0.t; x/ found here is feasible only
when accompanied by an existence theorem for the equation

Px D f .t; x; u0.t; x//:

We shall now use the Dynamic Programming Verification Theorem to minimize a
quadratic cost for a linear system.

2.2 The Linear-Quadratic Problem

Minimizing a quadratic integral cost over the trajectories of a linear control system
is the basic problem in all courses on linear control. It has a solution in explicit
form, fairly easily obtained and smooth enough to satisfy all requirements for a
classical solution to the HJB equation of the previous section. This problem has
a vast literature, but it is not the subject of this book, and is presented here as a
necessary transitionary passage to main topics.

Consider the linear system (1.2) or (1.44), namely

Px D A.t/x C B.t/u; t0 � t � t1; x.t0/ D x0; (2.25)

with control u.t/ 2 Rp and the quadratic integral cost functional

J.t0; x0; u.�// D
t1Z

t0

�
hx; M.t/xi C hu; N.t/ui

�
dt C hx.t1/; T x.t1/i; (2.26)

in which M.t/ D M 0.t/ � 0, N.t/ D N 0.t/ > 0, are continuous in t 2 Œt0; t1� and
T D T 0 > 0.

Problem 2.2.1 (Linear-Quadratic Control Problem). Find a control u.�/ that
minimizes the cost (2.26).

Introduce the value function

V.t; x/ D min
u.�/ fJ.t; x; u.�// j x.t/ D xg: (2.27)

Its backward HJB equation is (see (2.12))

@V

@t
C min

u

��
@V

@x
; A.t/x C B.t/u

	
C hx; M.t/xi C hu; N.t/ui

�
D 0; (2.28)

with boundary condition

V.t1; x/ D hx; T xi: (2.29)
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The internal minimization problem in (2.28) is to find

u.t; x/ D arg min

��
@V

@x
; A.t/x C B.t/u

	
C hu; N.t/ui

ˇ̌
ˇ̌ u 2 Rp

�
:

Solving this minimization by differentiating with respect to u and equating the
derivative to zero gives

u.t; x/ D �1

2
N �1.t/B 0.t/

@V

@x
: (2.30)

Substituting (2.30) into (2.28), we come to

@V

@t
C
�
@V

@x
; Ax

	
� 1

4

�
@V

@x
; BN �1B 0 @V

@x

	
C hx; Mxi D 0: (2.31)

We follow Theorem 2.1.2 and look for V.t; x/ as a quadratic form V.t; x/ D
hx; P.t/xi, with P.t/ D P 0.t/. Then

@V

@t
D hx; PP .t/xi; @V

@x
D 2P.t/x:

Substituting these into (2.31) gives

hx; PP .t/xi C 2hP.t/x; A.t/xi � hP.t/x; BN �1B 0P.t/xi C hx; Mxi D 0;

and so we arrive at the (backward) matrix differential equation of the Riccati type

PP C PA C A0P � P 0BN �1B 0P C M D 0; (2.32)

with terminal matrix boundary condition

P.t1/ D T: (2.33)

Consider the special case of Eq. (2.32) with M.t/ � 0. Differentiating the
identity I D P.t/P �1.t/ gives PP P �1 C P PP �1 D 0 or

PP �1 D �P �1 PP P �1:

Multiplying both sides of Eq. (2.32) by P �1, and using the last relation, we have

PP �1 D AP �1 C P �1A0 � BN �1B 0; P �1.t1/ D T �1: (2.34)
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The solution of this linear matrix equation is given by the integral formula

P �1.t/ D G.t; t1/T �1G0.t; t1/ C
Z t1

t

G.t; s/B.s/N �1.s/B 0.s/G0.t; s/ds;

(2.35)
in which G.t; s/ is defined in (1.11), (1.12).

Theorem 2.2.1. The value function for Problem 2.2.1 has the quadratic form
V.t; x/ D hx; P.t/xi, in which P.t/ satisfies the matrix Riccati equation (2.32),
with boundary condition (2.33). The optimal control, given by the linear feedback
function (2.30), is

u.t; x/ D �N �1.t/B 0.t/P.t/x:

If, furthermore, M.t/ � 0, then P �1.t/ is given by formula (2.35).

The next problem is similar to Problem 2.2.1 and involves the quadratic cost
functional

J0.t1; x1; u.�// D hx.t0/; Lx.t0/i C
t1Z

t0

�
hx; M.t/xi C hu; N.t/ui

�
dt; (2.36)

with final condition x.t1/ D x.1/: Here L D L0 > 0:

Problem 2.2.2 (Inverse Linear-Quadratic Control Problem). Find a control u.�/
that minimizes the cost (2.36).

The value function for Problem 2.2.2 is

V0.t; x/ D min
u.�/ fJ0.t; x; u.�// j x.t/ D xg: (2.37)

The corresponding forward HJB equation is

@V0

@t
C max

u

��
@V0

@x
; A.t/x C B.t/u

	
� hx; M.t/xi � hu; N.t/ui

�
D 0; (2.38)

with boundary condition

V0.t0; x/ D hx; Lxi: (2.39)

The internal maximization in (2.38) gives

u.t; x/ D 1

2
N �1.t/B 0.t/

@V0

@x
; (2.40)
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so that V0.t; x/ satisfies the relation

@V0

@t
C
�
@V0

@x
; A.t/x

	
C 1

4

�
@V0

@x
; B.t/.N.t//�1B 0.t/

@V0

@x

	
� hx; M.t/xi D 0;

(2.41)

with V0.t0; x/ D hx; Lxi: As before, assuming V0.t; x/ D hx; P0.t/xi and
repeating the type of substitutions given above, we arrive at the (forward) Riccati
equation

PP0 C P0A C A0P0 C P0BN �1B 0P0 � M D 0; P0.t0/ D L: (2.42)

The solution to Problem 2.2.2 may be used to determine the reach set X Œt � of
system (2.25) under the integral constraint

J0 .t; x.t/; u.�// � �:

In fact,

X Œt � D fx W V0.t; x/ � �g D fx W hx; P0.t/xi � �g: (2.43)

Exercise 2.2.1. Prove (2.43).

Exercise 2.2.2. Solve Problem 2.2.1 for the cost

J .t0; x0; u.�// D

D
t1Z

t0

�
hx�x�.t/; M.t/.x�x�.t//iChu; N.t/ui

�
dtChx.t1/�a; T .x.t1/�a/i; x.t0/ D x0;

(2.44)

in which T D T 0 > 0, M.t/ D M 0.t/ � 0, N.t/ D N 0.t/ > 0 are continuous in
t 2 Œt0; t1�, and function x�.�/ and vector a are given.

Exercise 2.2.3. Solve Problem 2.2.2 for the cost

J0.t1; x1; u.�// D maxfhx.t0/; Lx.t0/i;
t1Z

t0

hu; N.t/uidtg; x.t1/ D x.1/: (2.45)

We shall now use the Dynamic Programming approach to the calculation of reach
sets under hard bounds on the controls.
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2.3 Reachability Through the HJB Equation: Hard Bounds

For problems of reachability and closed-loop control we derive the main Dynamic
Programming equation which is a first-order partial differential equation with
appropriate boundary conditions.

2.3.1 Forward Reachability

We extend Definition 1.4.1 of reach sets to the nonlinear system (2.1), under the
hard bound u 2 P .t/.

Definition 2.3.1. The reach set X Œª� D X .ª; t0; x0/ of system (2.1) at given time
ª, from position ft0; x0g, is the set of all points x, for each of which there exists a
trajectory xŒs� D x.s; t0; x0/, generated by a control subject to the given constraint,
that transfers the system from position ft0; x0g to position fª; xg; x D xŒª�:

X .ª; t0; x0/ D fx W 9u.�/ 2 P .�/ such that x.ª; t0; x0/ D xg:

The reach set X Œª� D X .ª; t0; X 0/ from set-valued position ft0; X 0g at given time
ª is the union

X .ª; t0; X 0/ D
[

fX .ª; t0; x0/ j x0 2 X 0g:

The set-valued function X Œt � D X .t; t0; X 0/; t0 � t � ª, is the reach tube from
ft0; X 0g.

This definition of reach sets does not involve an optimization problem. However,
we shall relate it to a problem of optimization that can be solved by Hamiltonian
methods in their Dynamic Programming version. We characterize the (forward)
reach set by the value function

V0.£; x/ D min
u.�/;x.t0/

fd2.x.t0/; X 0/ j x.£/ D xg D min
x.t0/

fd2.x.t0/; X 0/ j x 2 X .£; t0; x.t0//g
(2.46)

over all measurable functions u.t/ that satisfy (1.18). See Fig. 2.1. Above,

d 2.x; X/ D minfhx � z; x � zi j z 2 Xg

is the square of the distance d.x; X/ from point x to set X . Observe that (2.46) is a
special case of (2.19) with zero running cost in (2.18).
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Fig. 2.1 The value function V0.£; x/ in (2.46) with x.t0/ … X 0

Lemma 2.3.1. The following relation holds:

X .£; t0; X 0/ D fx W V0.£; x/ � 0g: (2.47)

As seen from Fig. 2.1, (2.47) follows from the definition of the reach set
X .£; t0; X 0/, which thus turns out to be the level set (at level zero) of the function
V0.£; �/.

For the value function V0.t; x/ we again use the notation

V0.t; x/ D V0.t; x j t0; V0.t0; �//;

to emphasize its dependence on the boundary condition V0.t0; x/ D d 2.x; X 0/. The
next assertion merely restates (2.22).

Theorem 2.3.1. The value function V0.t; x/ satisfies the Principle of Optimality in
forward time and has the semigroup form

V0.t; x j t0; V0.t0; �// D V0.t; x j £; V0.£; � j t0; V0.t0; �///; t0 � £ � t: (2.48)

This theorem together with Lemma 2.3.1 also implies the following assertion.

Lemma 2.3.2. The reachability set X Œt � D X .t; t0; X 0/ satisfies the next relation

X Œt � D X .t; £; X .£; t0; X 0//: (2.49)



60 2 The Dynamic Programming Approach

The solution of the reachability problem, namely the one of calculating the reach set,
now depends on the properties of either the “classical” or the generalized “viscosity”
solutions of the forward HJB equation

@V0.t; x/

@t
C max

u

��
@V0.t; x/

@x
; f .t; x; u/

	
j u 2 P .t/

�
D 0; (2.50)

with boundary condition

V0.t0; x/ D d 2.x; X 0/: (2.51)

Equation (2.50) follows from (2.48) or it may be seen as a special case of (2.20).
This equation is solvable in the classical sense (that is, (2.50) holds everywhere),
if the partials of V.t; x/ in t; x exist and are continuous. Otherwise (2.50) is a
symbolic relation for the generalized HJB equation which has to be described in
terms of subdifferentials, Dini derivatives or their equivalents. However, the typical
situation is that V is not differentiable. The treatment of Eq. (2.50) then involves
the notion of generalized “viscosity” or “minmax” solution for this equation (see
[16, 50, 247]). The last notion will be later treated in a separate Sect. 5.1 which
deals with nondifferentiable value functions and generalized solutions. In the case
of linear systems with convex constraints the value functions are convex in the
state space variables and hence directionally differentiable these solutions belong
the generalized, which property is checked directly.

The calculation of reach sets and tubes can thus be reduced to the calculation
of the value function V0.t; x/ or its level sets X Œt � D fx W V0.t; x/ � 0g and their
evolution in time t . On the other hand, we note that X Œt � may also be treated as
the cross-section (“cut”) X Œt � D X .t; t0; X 0/ of the solution tube X .�; t0; X 0/ to the
differential inclusion

Px 2 F.t; x/; t � t0; x0 2 X 0; (2.52)

in which F.t; x/ D [ff .t; x; u/ j u 2 P .t/g.
A set-valued function X Œt � is a solution to Eq. (2.52) on the interval T D Œt0; £�

if it satisfies this equation for almost all t 2 T . Under the previous assumptions on
f and P there is a unique solution X Œ�� D X .�; t0; X 0/ issuing from X 0 for any time
interval Œt0; £�. The solution X Œ�� may also be based on using the “funnel equation”
described in the next lines (see also Sect. 8.1 and [158]).

Assumption 2.3.1. F.t; x/ is convex compact-valued .F W Œt0; t1� � Rn !
convRn/, continuous in t; x in the Hausdorff metric and Lipschitz-continuous in x:

h.F.t; x/; F.t; y// � Lhx � y; x � yi1=2; L < 1: (2.53)
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Here h is the Hausdorff distance

h.Q ; M / D maxfhC.Q ; M /; hC.M ; Q /g;

and the Hausdorff semidistance between sets Q ; M is

hC.Q ; M / D max
x

min
z

fhx � z; x � zi1=2 j x 2 Q ; z 2 M g:

The Hausdorff distance is a metric in the space of compact sets.
The “ordinary distance” d.Q ; M / between sets Q ; M ; is

d.Q ; M / D min
x

min
z

fhx � z; x � zi1=2 j x 2 Q ; z 2 M g:

Theorem 2.3.2. Under Assumption 2.3.1 the forward reach set X Œt � is compact and
the set-valued tube X Œ�� is the unique solution to the following “funnel” equation for
the differential inclusion (2.52):

lim
¢!C0

¢�1h.X Œt C ¢�; [f.x C ¢F.t; x// j x 2 X Œt �g/ D 0; (2.54)

with boundary condition X Œt0� D X 0.

Theorem 2.3.2 was introduced in [75, 224], see also [26, 158]. Note that the set-
valued function X Œt � of the last theorem is continuous in the Hausdorff metric. Thus
it is possible to single out two alternative approaches to the treatment of reachability:
namely, through the solution of the HJB equation (2.50) (the calculation of the value
function V0.t; x/ and its level sets) or through the calculation of solution tubes
X Œt � to the differential inclusion (2.52) by dealing, for example, with the funnel
equation (2.54). In either approach, the calculation of reach sets is solved in forward
time. A reciprocal approach considers reach sets in backward (reverse) time.

2.3.2 Backward Reachability or the Solvability Problem

Whereas the reach set is the set of all states that can be reached from a given initial
set, the backward reach set comprises all those states, taken at instant £, from which
it is possible to reach a given “target” set M taken to be a convex compact in Rn.

Definition 2.3.2. Given a closed target set M 	 Rn, the backward reach
(solvability) set W Œ£� D W .£; t1; M / at given time £, from set-valued position
ft1; M g; is the set of states x 2 Rn for each of which there exists a control
u.t/ 2 P .t/ that steers system (2.1) from state x.£/ D x to x.t1/ 2 M . The set-
valued function W Œt � D W .t; t1; M /; £ � t � t1; is the solvability (or backward
reach) tube from ft1; M g.

Backward reach sets W Œ£� are also known as weakly invariant sets relative to
position ft1; M g:



62 2 The Dynamic Programming Approach

Definition 2.3.3. A set W Œ£� is said to be weakly invariant relative to system (2.1)
[(1.2), (1.7)] and position ft1; M g, if it consists of all those points x D x.£/

(positions f£; xg), from which set M is reachable at time t1 by some of the possible
controls.

Hence, from each position f£; xg 2 W Œ£� there exists at least one trajectory that
stays in the backward reach tube and reaches M at t D t1: The backward reach set
W .£; t1; M / is the largest or, in other words, the inclusion maximal weakly invariant
set relative to M .

The calculation of backward reach sets may be achieved through the value
function

V.£; x/ D min
u

fd 2.x.t1/; M / j x.£/ D xg;

V .£; x/ D V.£; x j t1; V .t1; �//; V .t1; x/ D d 2.x; M /; (2.55)

in which the minimization is over all u.�/ 2 P .�/. Similarly to Lemma 2.3.1, the
backward reach set is a level set.

Lemma 2.3.3. The following relation is true:

W .£; t1; M / D fx W V.£; x/ � 0g; (2.56)

The next result is the analog of Theorem 2.3.1.

Theorem 2.3.3. The set-valued mapping W .t; t1; M / satisfies the semigroup
property

W .t; t1; M / D W .t; £; W .£; t1; M //; t � £ � t1: (2.57)

(in backward time) and the value function V.t; xjt1; V .t1; �// satisfies the Principle
of Optimality in the semigroup form

V.t; x j t1; V .t1; �// D V.t; x j £; V .£; � j t1; V .t1; �///; t � £ � t1: (2.58)

Associated with the Principle of Optimality (2.58) is the backward HJB equation

@V.t; x/

@t
C min

u

��
@V

@x
; f .t; x; u/

	�
D 0; (2.59)

with boundary condition

d 2.x; M / D V.t1; x/: (2.60)
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Associated with the semigroup (2.57) is the “backward” funnel equation for the
differential inclusion (2.52):

lim
¢!C0

¢�1h.W Œt � ¢�; [f.x � ¢F.t; x//jx 2 W Œt �g/ D 0; (2.61)

with boundary condition W Œt1� D M .

Lemma 2.3.4. The set-valued function W Œt � D W .t; t1; M /; W Œt1� D M ; is the
unique solution to Eq. (2.61).

Remark 2.3.1. The above assertions emphasize two ways of describing reachability
sets and tubes, namely through set-valued functions like W Œt � or through “ordi-
nary” functions like V.t; x/. These are connected through (2.56).

Finally we formulate an important property of reach sets for our systems in the
absence unknown disturbances .v D 0/:2 This is when the forward and backward
reach sets X .£; t0; X 0/; W .£; t1; M / have the next connection.

Theorem 2.3.4. Suppose X .t1; t0; X 0/ D X Œt1� D M : Then W Œt0� D
W .t0; t1; M / D X 0:

Each of these sets X .£; t0; X 0/; W .£; t1; M / does not depend on whether it is
calculated in the class of open-loop controls UO or closed-loop controls UC .

Exercise 2.3.1. Prove Theorem 2.3.4.

Strongly Invariant Sets. In contrast with the weakly invariant backward reach sets
W Œ£� from which the target M is reachable at time t1 with some control we now
introduce the notion of strongly invariant sets.

Definition 2.3.4. A set WsŒ£� is strongly invariant relative to system (2.10) and
position ft1; M g; if from each of its points x D x.£/ set M is reachable at time t1
by all possible controls.

A set WsŒ£� that consists of all such points x D x.£/ is said to be the inclusion-
maximal strongly invariant set relative to position ft1; M g.

The strongly invariant set relative to M is given by the value function

Vs.£; x/ D max
u

fd 2.x.t1/; M / j x.£/ D xg; (2.62)

in which the maximization is over all u.�/ 2 P .�/; u.�/ 2 UO.�/.
Consider the backward HJB equation

@Vs.t; x/

@t
C max

u

��
@Vs

@x
; f .t; x; u/

	�
D 0; (2.63)

2Problems of reachability under unknown but bounded disturbances are beyond the scope of this
book, along the approaches of which they are treated in papers [133, 176, 183].



64 2 The Dynamic Programming Approach

with boundary condition

Vs.t1; x/ D d 2.x; M /: (2.64)

Theorem 2.3.5. If Eq. (2.64) has a unique (viscosity or classical) solution Vs.t; x/,
the strongly invariant set WsŒ£� D Ws.£; t1; M / is the level set

WsŒ£� D fx W Vs.£; x/ � 0g:

The next result is obvious.

Lemma 2.3.5. The set WsŒ£� 6D ; iff there exists a point x such that the reach set
X .t1; £; x/ 	 M .

Exercise 2.3.2. Does the mapping Ws.£; t1; M / satisfy a semigroup property
similar to (2.57)?

Solutions of the HJB equations above require rather subtle analytical or numerical
techniques. Some solutions may however be obtained through methods of convex
analysis. In particular, this is the case for linear-convex systems, which are when the
system is linear in x; u and the constraints on u; x0 are convex. These will be studied
next.

2.4 Reachability for Linear-Convex Systems

In this section we calculate the value functions through methods of convex analysis
and also find the support functions for the forward and backward reachability sets.

2.4.1 Forward Reachability: Calculating the Value Functions

Consider system (2.25), namely,

Px D A.t/x C B.t/u; (2.65)

with continuous matrix coefficients A.t/; B.t/ and hard bound u.t/ 2 P .t/, with
P .t/ convex, compact, and Hausdorff-continuous.

The Value Function (Forward)

Problem 2.4.1. Given starting set-valued position ft0; X 0g, terminal time ª and
condition x.ª/ D x, calculate the value function V0.ª; x/ of (2.46) at any position
fª; xg:
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After solving this problem we may use (2.47) to find the forward reach set X Œt � D
X .t; t0; X 0/ as the level set X Œt � D fx W V0.ª; x/ � 0g.

The HJB equation (2.50) now has the form

@V0.t; x/

@t
C max

��
@V0.t; x/

@x
; A.t/x C B.t/u

	 ˇ̌
ˇ̌ u 2 P .t/

�
D 0;

or, since

maxfhl; ui j u 2 P .t/g D ¡.l j P /

is the support function of set P .t/, we may write

@V0.t; x/

@t
C
�
@V0.t; x/

@x
; A.t/x

	
C ¡

�
@V0.t; x/

@x

ˇ̌
ˇ̌ B.t/P .t/

�
D 0: (2.66)

The boundary condition for (2.66) is

V0.t0; x/ D d 2.x; X 0/ D min
q

fhx � q; x � qi j q 2 X 0g: (2.67)

Instead of solving the HJB equation, V0.£; x/ may be calculated through duality
techniques of convex analysis along the scheme given, for example, in [174,
Sect. 1.5].

Indeed, observing that the Fenchel conjugate for function ®.£; x/ D d 2.x; X 0/

in the second variable is ®�.£; l/ D ¡.l j X 0/ C 1
4
hl; li, we may write, making use

of the minmax theorem of [72] to interchange min and max below,

V0.£; x/ D min
u

fd 2.x.t0/; X 0/ j x.£/ D xg

D min
u

max
l

fhl; x.t0/i � 1

4
hl; li � ¡.l j X 0/ j x.£/ D xg

D max
l

min
u

‰.£; x; l; u.�//; (2.68)

where

‰.£; x; l; u.�// D hs.£; t0; l/; xi �
Z £

t0

hs.t; t0; l/; B.t/u.t/idt � 1

4
hl; li � ¡.l j X 0/:

Here sŒt � D s.t; t0; l/ is the solution of the adjoint equation

Ps D �A0.t/s; s.t0/ D l; (2.69)

and s; l are column vectors.
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The function ‰.£; x; l; u.�// is concave in l and ‰.£; x; l; u.�// ! �1 as
hl; li ! 1. It is also convex in u with u.t/ bounded by P .t/. This allows us again,
in view of ([72]), to interchange min and max in (2.68). Thus

V0.£; x/ D max
l

ˆ0Œ£; x; l�; (2.70)

with

ˆ0Œ£; x; l� D minf‰.£; x; l; u.�// j u.t/ 2 P .t/; t0 � t � £g D

D hs.£; t0; l/; xi �
Z £

t0

¡.B 0.t/s.t; t0; l/ j P .t//dt � 1

4
hl; li � ¡.l j X 0/:

We now show by a direct substitution of V0.t; x/ into (2.66) that it satisfies this
equation with boundary condition (2.67). Indeed, let l0 D l0.t; x/ be the maximizer
of function ˆ0Œt; x; l� in l (see (2.70)). The structure of ˆ0Œt; x; l� indicates that l0

is unique. (Prove this assertion.)
Next we calculate the partial derivatives @V0.t; x/=@t ; @V0.t; x/=@x. According

to the rules of differentiating the maximum of a function like in (2.70), (see [61]),
we have

@V.t; x/

@t
D @ˆ0Œt; x; l0�

@t
D hPs.t; t0; l0/; xi � ¡.s.t; t0; l0/ j B.t/P .t//;

@V .t; x/

@x
D @ˆ0Œt; x; l0�

@x
D s.t; t0; l0/:

Substituting these partials into (2.66) and keeping (2.69) in view, one observes
that V0.t; x/ is indeed a solution to Eq. (2.66).

The boundary condition (2.67), namely,

V.t0; x/ D maxfhl; xi � 1

4
hl; li � ¡.l j X 0/ j l 2 Rng D

D maxfhl; xi � ®�.t0; l/ j l 2 Rng D d 2.x; X 0/;

is also fulfilled. We summarize these results in the next assertion.

Theorem 2.4.1. For the linear system (1.44) the value function V0.£; x/ of the
forward HJB equation (2.66) has the following properties:

(i) V0.£; x/ is given by (2.70).
(ii) The maximizer l0.£; x/ D arg maxl ˆ0Œ£; x; l� is unique and continuous in £; x.

(iii) V0.£; x/ is a proper convex function in x and is therefore directionally
differentiable along any direction f1; lg.

(iv) V0.t; x/ satisfies the HJB equation (2.66) for all t; x and also the boundary
condition (2.67).
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Proof. The second assertion follows from the strict convexity of ˆ0.£; x; l/ in l due
to the quadratic term and from the continuity of ˆ.£; x; l/ in £; x. Property (iii) may
be checked directly from the explicit formulas for the partials of V0.t; x/, while (iv)
is verified through direct substitution (Check whether V0.t; x/ is unique). ut
Remark 2.4.1. Note that for a time-invariant system one has

V0.£; x/ D V0.£; x j t0; X 0/ D V0.£ � t0; x j 0; X 0/:

2.4.2 The Conjugate of the Value Function V0

Having calculated V0.t; x/ according to (2.70), let us now find its conjugate in the
second variable, denoted by V �

0 .t; l/. We have

V �
0 .t; l/ D max

x
fhl; xi � V0.t; x/ j x 2 Rng D

max
x

fhl; xi � max
œ

fˆ0Œt; x; œ� j œ 2 Rn g j x 2 Rng

D max
x

min
œ

fhl; xi � ˆ0Œt; x; œ� j x; œ 2 Rng

D min
œ

max
x

fhl; xi � hs.t; t0; œ/; xi C
Z t

t0

¡.B 0.Ÿ/s.Ÿ; t0; œ/ j P .Ÿ//dŸ

C1

4
hœ; œi C ¡.œ j X 0/ j x; œ 2 Rng:

The minmax is here attained at s.t; t0; œ/ D l (for values of œ where this
equality is not true the internal maximum in x is C1). Hence, keeping in mind
that s.t; t0; œ/ D G0.t0; t/œ D l; we come to the formula

V �
0 .t; l/ D

Z t

t0

¡.l j G.t; Ÿ/B.Ÿ/P .Ÿ//dŸ C ¡.l j G.t; t0/X 0/ C 1

4
hl; G.t; t0/G0.t; t0/li;

(2.71)

Theorem 2.4.2. (i) The conjugate V �
0 .t; l/ to the value function V0.t; x/ is given

by (2.71).

(ii) The forward reach set X Œt � D X .t; t0; X 0/ is given by

X Œt � D X .t; t0; X 0/ D fx W hl; xi � V �
0 .t; l/ � 0 j 8l 2 Rng (2.72)
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Proof. Assertion (ii) follows from

V0.t; x/ D max
l

fhl; xi � V �
0 .t; l/ j l 2 Rng;

since V0 is conjugate to V �
0 . ut

2.4.3 The Value Function (Backward)

A scheme similar to the previous one works for the solution V.t; x/ of the backward
equation (2.59) written for linear system (2.65) as

@V.t; x/

@t
C
�
@V.t; x/

@x
; A.t/x

	
� ¡

�
� @V.t; x/

@x

ˇ̌
ˇ̌ B.t/P .t/

�
D 0: (2.73)

The boundary condition for (2.55) or (2.73) is

V.t1; x/ D d 2.x; M / D min
q

fhx � q; x � qi j q 2 M g: (2.74)

Omitting the calculation, which is similar to the above, we come to

V.£; x/ D max
l

ˆŒ£; x; l�; (2.75)

with

ˆŒ£; x; l� D hs.£; t1; l/; xi �
Z t1

£

¡.�s.t; t1; l/ j B.t/P .t//dt � 1

4
hl; li � ¡.l j M /:

Theorem 2.4.3. The value function V.£; x/ for the backward HJB equa-
tion (2.73), (2.74) has the following properties:

(i) V.£; x/ is given by (2.75).
(ii) The maximizer l0.£; x/ D arg maxl ˆŒ£; x; l� is unique and continuous in £; x.

(iii) V.£; x/ is a proper convex function in x and is directionally differentiable for
any £; x.

(iv) V.t; x/ satisfies the HJB equation (2.73) for all t; x and also the boundary
condition (2.74).

Exercise 2.4.1. Find the conjugate function V �.t; l/:

Formulas of type (2.70), (2.75) may be also calculated with criteria d.x.t0/; X 0/;

d.x.t1/; M / instead of d 2.x.t0/; X 0/; d 2.x.t1/; M / in the definitions of
V0.t; x/; V .£; x/. In this case the term 1

4
hl; li has to be omitted and the maxima

taken over a unit sphere hl; li � 1. These calculations lead to the next result.
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Theorem 2.4.4. Let Vf .t; x/; Vb.t; x/ be the solutions of HJB equations (2.66),
(2.73) with boundary conditions

Vf .t0; x/ D d.x; X 0/; Vb.t1; x/ D d.x; M /; (2.76)

respectively. Then the following relations hold:

Vf .£; x/ D min
u

fd.x.t0/; X 0/ j x.£/ D xg D max
l

fˆf Œ£; x; l� j hl; li � 1g D

D max
l

fˆf Œ£; x; l� � I .l jB.0// j l 2 Rng; (2.77)

with I .l jB.0// being the indicator function for the unit ball B.0/ and

ˆf Œ£; x; l� D hs.£; t0; l/; xi �
Z £

t0

¡.s.t; t0; l/ j B.t/P .t//dt � ¡.l j X 0/:

Similarly,

Vb.£; x/ D min
u

fd.x.t1/; M / j x.£/ D xg D max
l

fˆbŒ£; x; l� j hl; li � 1g D

D max
l

fˆbŒ£; x; l� � I .l jB.0// j l 2 Rng; (2.78)

with

ˆbŒ£; x; l� D hs.£; t1; l/; xi �
Z t1

£

¡.�s.t; t1; l/ j B.t/P .t//dt � ¡.l j M /:

The conjugate value functions are

V �
f .£; l/ D

Z £

t0

¡.l jG.£; Ÿ/B.Ÿ/P .Ÿ//dŸ C ¡.l j G.£; t0/X 0/ C I .l jG.£; t0/B.0//;

(2.79)

V �
b .£; l/ D

Z t1

£

¡.�l j G.£; Ÿ/B.Ÿ/P .Ÿ//dŸC¡.l j G.£; t1/M /CI .l jG.£; t1/B.0//:

(2.80)

Here, as in the above, G.£; Ÿ/ is defined by (1.11), (1.12). The forward and backward
reach sets may now be described as follows.

Theorem 2.4.5. The support functions for the forward and backward reach sets are

¡.l j X Œ£�/ D ¡.l j X .£; t0; X 0// D
Z £

t0

¡.l j G.£; Ÿ/B.Ÿ/P .Ÿ//dŸ C ¡.l j G.£; t0/X 0/;

(2.81)

¡.l j W Œ£�/ D ¡.l j W .£; t1; M // D
Z t1

£
¡.�l j G.£; Ÿ/B.Ÿ/P .Ÿ//dŸ C ¡.l j G.£; t1/M /:

(2.82)
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Exercise 2.4.2. Prove Theorems 2.4.4, 2.4.5.

Figure 2.2 illustrates the four-dimensional value function of type V0.t; x/,
(see (2.46)), for system

Px1 D x3; Px3 D �.k1 C k2/x1 C k2x3;

Px2 D x4; Px4 D k1x1 � .k1 C k2/x3 C u;

k1; k2 > 0; under bounded control juj � � through its two-dimensional projections
on subspaces Lfx1; x2g and Lfx3; x4g. Shaded are the projections of related level
sets.

Having described the forward and backward reachable tubes, we shall now
analyze the notion of colliding tubes, then use it to calculate all the points of the
reachable sets.

2.5 Colliding Tubes: Calculating All Reachable Points

In this section we introduce the Principle of Colliding Tubes investigating the
interaction between the forward reach tube emanating from a starting point with
the backward reach tube emanating from a terminal point. Using this principle,
one may calculate optimal trajectories from starting point to terminal point without
calculating the controls.

Colliding Tubes

Consider two set-valued positions of system (2.25): the starting position ft0; X 0g
and the terminal position ft1; M g with t0 � t1. For each of these one may specify a
reach tube—in forward and backward time, respectively:

X Œt � D X .t; t0; X 0/; and W Œt � D W .t; t1; M /; t 2 Œt0; t1�:

Lemma 2.5.1. Suppose at any time t D t� the intersection X Œt�� \ W Œt�� 6D ;.
Then

X Œt � \ W Œt � 6D ;; 8t 2 Œt0; t1�:

The proof of this statement follows from the definitions of forward and backward
reach sets. This yields the next conclusion.
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Fig. 2.2 Two-dimensional projections of the four-dimensional value function with their level sets
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Corollary 2.5.1. The tube

ZŒt � D X Œt � \ W Œt �; t 2 Œt0; t1�;

consists of all trajectories of system (2.1) that connect the set X 0 at t D t0 to the set
M at t D t1: Here

ZŒt � D fx W V0.t; x/ � 0; V .t; x/ � 0g D X Œt � \ W Œt �;

for all t 2 Œt0; t1�; V0.t; x/ is the value function for the forward reach set (2.46) and
V.t; x/ is the value function for the backward reach set (2.55).

In particular ZŒt0� D X 0 \ W Œt0�; ZŒt1� D X Œt1� \ M : Note that the knowledge of
tube Z.�/ does not require any calculation of the corresponding controls.

The problem of calculating all reachable points may be separated into two
classes, namely the one of calculating the boundary points of the reach set X Œt1� D
X .t1; t0; x0/ and that of calculating its interior points.

The first class of problems is easily solved in the following way. Suppose x1 is
a point on the boundary of X Œt1�. The corresponding support vector (or vectors) l�
are given by

l� 2 fl W ¡.l j X Œt1�/ D hl; x1ig D L� (2.83)

Taking any l� 2 L� and applying the maximum principle in its simplest form (see
Sect. 1.4, (1.46)), we observe that the desired control u�.t/ satisfies the relation

h§�.t/; B.t/u�.t/i D ¡.§�.t/ j B.t/P .t// D maxfh§�.t/; B.t/ui j u 2 P .t/g
(2.84)

for almost all t 2 Œt0; t1�. Here §�.t/ is the solution of the adjoint equation (1.47)
(1.61), with §�.t1/ D l�.3

Lemma 2.5.2. The control u�.t/ that steers the trajectory x.t/ from point x0 D
x.t0/ to given point x1 D x.t1/ on the boundary of reach set X Œt1� satisfies the
maximum principle (2.84), in which §�Œt � is the solution to Eq. (1.47) ((1.62)) with
boundary condition §�.t1/ D l�, and vector l� given by (2.83).

Note that u�.t/ will be defined for almost all t 2 Œt0; ª� provided that each
coordinate function hi .t/ of the row h.t/ D .§�.t//0B.t/ is nonzero almost
everywhere. This property is ensured by strong controllability of the system under
consideration (see Sect. 1.3.3).

3With additional information on P .t/ (see Remark 1.5.3), in degenerate cases the control u�.t/

may be written down in more detail.
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Suppose now that x1 is an interior point of X Œt1� (x1 2 intX Œt1� D
intX .t1; t0; x0// and we are to find the control that steers x.t/ from x.t0/ D x0

to x.t1/ D x1. We may then proceed as follows.
First find the forward reach sets X Œ£� D X .£; t0; x0/ from point x0 and the

backward reach sets W Œ£� D W .£; t1; x1/ from point x1. This may be done, for
example, by applying formulas (2.81) and (2.82). The latter yield two relations:

¡.l j X Œ£�/ D hl; G.£; t0/x0i C
Z £

t0

¡.l j G.£; s/B.s/P .s//ds; (2.85)

and

¡.l j W Œ£�/ D hl; G.£; t1/x1i C
Z t1

£

¡.�l j G.£; s/B.s/P .s//ds; (2.86)

where tube X Œ£� develops from X Œt0� D x0 with £ increasing and tube W Œ£�

develops from W Œt1� D x1, with £ decreasing.
We thus have two intersecting tubes (X Œ£� \ W Œ£� 6D ;; 8£ 2 Œt0; ª�), heading

towards each other in opposite directions. If x0 lies on the boundary of W Œt0�, then
we arrive at the situation described in the previous case, Lemma 2.5.2, with x0 and
x1 interchanged and problem solved in backward time. Hence we further assume
x0 2 intW Œt0�.

Then we have x1 2 intX Œt1� and x0 2 intW Œt0� and there exists an instant £� 2
Œt0; t1� when the boundaries of the two tubes collide. Namely, developing W Œt � from
t1 backwards towards t0, we first have W Œt � � X Œt � till we reach instant t D £�,
when W Œt � bumps into the boundary of X Œt �, touching it from inside at point x�, so
that

W Œ£�� 	 X Œ£��; and 9l� W hl�; x�i D ¡.l�jX Œ£��/ D ¡.l�jW Œ£��/: (2.87)

Let us find this instant £�. With W Œ£� � X Œ£�; we have

k.£; l; x0; x1/ D ¡.l jX Œ£�/ � ¡.l jW Œ£�/ > 0;

with

k.£; l; x0; x1/

D hl; G.£; t0/x0 � G.£; t1/x1i C
Z £

t0

¡.l j G.£; s/B.s/P .s/ds

�
Z t1

£

¡.�l j G.£; s/B.s/P .s//ds;
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and

”.£; x0; x1/ D min
l

fk.£; l; x0; x1/ j hl; li D 1g > 0: (2.88)

With x0; x1 fixed, instant £ will then be the largest root of equation ”.£; x0; x1/ D
0—the first time when W Œ£� touches X Œ£� from inside.

Function ”.£; x0; x1/ is defined for £ 2 Œt0; t1�, with ”.t0; x0; x1/ <

0; ”.t1; x0; x1/ > 0, and it is continuous in £. Therefore, point £�, where
”.£�; x0; x1/ D 0 exists. The maximizer l� of (2.88) is the support vector to X Œ£��

at touching point, which is precisely the vector x� D x.£�/, that ensures (2.87).

Lemma 2.5.3. The first instant £� of collision for W Œ£� 	 X Œ£� with boundary of
tube X Œ£� from inside is the largest root of equation ”.£�; x0; x1/ D 0. The point x�
of such collision satisfies the maximum rule

maxfhl�; xijx 2 X Œ£��g D hl�; x�i D maxfhl�; xijx 2 W Œ£��g:

The calculation of the control u�.t/ which steers x.t/ from x.t0/ D x0 to x.t1/ D
x1 is now reduced to the class of points considered in Lemma 2.5.2, namely the
points that lie on the boundaries of the respective reach sets.

Here we first specify the control u�.t/ for interval t 2 Œt0; £��, working with
point x�, which lies on the boundary of set X Œ£��. Then u�.t/ satisfies the maximum
principle

hl�; G.£�; t /B.t/u�.t/i D maxfhl�; G.£�; t /B.t/uiju 2 P .t/g
D ¡.l� j G.£�; t /B.t/P .t//; t � £�: (2.89)

Applying similar reasoning to the interval Œ£�; t1�; with “starting point” x1 D x.t1/

and x�.£�/ being on the boundary of reach set W Œ£�� with same support vector
l�, we may calculate u�.t/ for t 2 Œ£�; t1�. This leads again to relation (maximum
principle) (2.89), but now taken for t > £�.

Theorem 2.5.1. The control u�.t/ that steers the trajectory x.t/ from x.t0/ D x0

to x.t1/ D x1 satisfies the maximum principle relation (2.89), where l� is the
minimizer of problem (2.88), with £ D £� being the largest root of equation
”.£; x0; x1/ D 0:

Here Fig. 2.3 illustrates the idea of colliding tubes.4 Namely, given in green is
the backward reach tube from the terminal point xm at target set M (marked in red).
Given in blue is the forward reach tube emanating from the starting point x0 located
in set X 0: The intersection of these two tubes is the union of all system trajectories
that connect the starting point with the terminal point.

4This example is animated in the toolbox [132].
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Fig. 2.3 Colliding tubes for control “from point to point”

The original equations for this picture are (x 2 R2):

Px D Ax C Bu; A D
�

0 1

�2 0

�
; B D

�
0

1

�
; x0 D

�
3

1

�
; xm D B D

�
2

0

�
:

with �2 � u � 2; t 2 Œ0; 5�: The time of switching from one tube to the other is
£ D 0:886:

We shall now indicate how to construct feedback strategies for target control by
using backward reach sets.

2.6 The Closed-Loop Target Control

Here we introduce a scheme for finding the closed-loop control for minimizing at
given time the distance from a given target set. This would require to know the
backward reach set. Once this set is known, there would be no need of integrating
the HJB equation which produces it as a level set. The problem will be therefore
shifted to computation of these level sets without solving the HJB equation. Such
computation could be done through ellipsoidal methods, as explained in the next
chapter.

Consider system (1.2) with target set M . Let W Œ£� D W .£; ª; M / be its
backward reach set (the solvability set) from position fª; M g.
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Problem 2.6.1. In the class of set-valued feedback strategies UC D fU.t; x/g find
feedback strategy U �.t; x/ that ensures the inclusion xŒª� 2 M , whatever be the
starting position f£; xg; x 2 W Œ£�.

From the definition of W Œ£� it follows that the problem of reaching target set
W Œª� D M from position f£; xg is solvable if and only if x 2 W Œ£�.

We now construct a solution strategy U �.t; x/ for Problem 2.6.1. Let

VC .t; x/ D d.G.ª; t/x; G.ª; t/W Œt �/

and let dVC .t; x/=dt ju be the total derivative of VC .t; x/ at position ft; xg, along
the trajectory of Eq. (1.2) under control u.

The solution strategy is defined as

U �.t; x/ D
8<
:

arg min

�
dVC .t; x/=dt ju

ˇ̌
ˇ̌ u 2 P .t/

�
; if VC .t; x/ > 0;

P .t/; if VC .t; x/ D 0:

(2.90)

Observe that the set-valued function U �.t; x/ is upper semicontinuous in ft; xg
with respect to inclusion. This ensures the existence and extendability of solution to
the differential inclusion

Px 2 A.t/x C B.t/U �.t; x/; (2.91)

from x.£/ D x 2 W Œ£�: The next fact turns out to be true.

Lemma 2.6.1. With U �.t; x/ selected according to (2.90) we have

dVC .t; x/

dt

ˇ̌
ˇ
u
� 0;

for all u 2 U �.t; x/.

It now remains to verify that u may indeed be selected so as to ensure the derivative
dVC .t; x�Œt �/=dt ju is non-positive within t 2 Œ£; ª�. Calculate

dVC .t; x/=dt ju D @VC .t; x/

@t
C
�
@VC .t; x/

@x
; A.t/x C B.t/u

	
(2.92)

in which

VC .t; x/ D maxf0; maxfhG0.ª; t/l; xi � ¡.G0.ª; t/l j W Œt �/jhl; li � 1gg:

Note that we need to ensure dVC .t; x/=dt ju � 0 only where VC .t; x/ > 0: Now
suppose VC .t; x/ > 0:
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Then let

l0.t; x/ D arg maxfhl; G.ª; t/xi � ¡.l j G.ª; t/W Œt �/ j hl; li � 1g: (2.93)

Under the constraint hl; li � 1 the vector l0 D l0.t; x/ is unique. Applying the rules
for differentiating a “maximum function,” [61], we further have

@VC .t; x/

@t
D hl0; �G.ª; t/A.t/xi � @¡.l0 j G.ª; t/W Œt �/

@t
;

@VC .t; x/

@x
D G0.ª; t/l0:

Since

Px D A.t/x C B.t/u; W Œt � D G.t; ª/M �
Z ª

t

G.t; s/B.s/P .s/ds;

then from (2.82), (2.80) we have

¡.l0 j G.ª; t/W Œt �/ D ¡.l j M / C
Z ª

t

¡.�l0 j G.ª; s/B.s/P .s//ds;

so that

@¡.l0 j G.ª; t/W Œt �/

@t
D �¡.�l0 j G.ª; t/B.t/P .t//:

Substituting the results into Eq. (2.92) we finally have

dVC .t; x/=dt ju D ¡.�l0 j G.ª; t/B.t/P .t// C hl0; G.ª; t/B.t/ui:

Taking

U �.t; x/ D arg maxfhl0; G.ª; t/B.t/ui j u 2 P .t/g; (2.94)

we get

dVC .t; x/=dt ju D 0; u 2 U �.t; x/:

To prove that U �.t; x/ is a solution to Problem 2.6.1, first integrate dVC .t; x/=dt

from £ to ª along the trajectories x�Œt � of (2.91) emanating from x�.£/ D x. Then,
with U �.t; x/ selected according to (2.90), one gets

Z ª

£

dVC .t; x�Œt �/ D VC .ª; x�Œª�/ � VC .£; x/ � 0;
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so VC .ª; x�Œª�/ � VC .£; x/, which implies that once VC .£; x/ � 0 (which means
x�Œ£� D x 2 W Œ£�), one will have VC .ª; x�Œª�/ � 0 (which means x�Œª� 2
W Œª� D M ).

Note that under VC .t; x.t// � 0, with control selected due to (2.90), the
trajectory x.t/ never leaves the tube W Œt �. So if, say VC .t; x.t// D 0, but at some
point t 0 D t C ¢ we have

VC .t; x.t 0// D d.G.ª; t 0/x.t 0/; G.ª; t 0/W Œt 0�/ > 0;

then, due to the directional differentiability of function VC .t; x.t//, we would have
at some point t 00 2 .t; t 0� that the derivative dVC .t 00/=dt > 0; which is not possible
due to (2.90).

Theorem 2.6.1. The closed-loop strategy U �.t; x/ which solves Problem 2.6.1 is
defined by (2.90), (2.94), in which l0 D l0.t; x/ is the optimizer of (2.93) and W Œt �

is the backward reach tube from position fª; M g.

Remark 2.6.1. A strategy U �.t; x/ given by (2.94), (2.93), is said to be produced
by the extremal aiming rule (see [121]).

Exercise 2.6.1. Find the closed-loop strategy that steers point x 2 W Œ£� to a given
point x� 2 M (provided x; x� are such that the problem is solvable).

2.7 Reachability Within an Interval

The problem of reachability may be formulated as a request to know what states
may be reached within a time interval rather than at fixed time.

Thus we consider a generalization of Problem 2.6.1.

Problem 2.7.1. Find the set WŒ£; ‚� D W.£; ‚; M / of all points for which there
exists a control u�.t/; which ensures the inclusion xŒª� D x.ª; £; x/ 2 M , for some
ª 2 ‚ D Œ’; “�; “ � ’ � £.

This is the backward reach set relative to f‚; M g: Unlike Problem 2.6.1 where
the terminal time is fixed at ª, in Problem 2.7.1 the terminal time can be any instant
within the interval ‚ D Œ’; “�:

The set WŒ£; ‚� is weakly invariant relative to f‚; M g, namely, such that for
each point x 2 WŒ£; ‚� there exists at least one trajectory that reaches set M at
some time ª 2 ‚:

Remark 2.7.1. Note that the maximal backward reach sets WŒ£; ‚� are the same
whether calculated in the class of open-loop or closed-loop controls.

Problem 2.7.2. In the class of set-valued feedback strategies UC D fU.t; x/g find
feedback strategy U �.t; x/ which ensures the inclusion xŒª� 2 M for some ª 2 ‚,
whatever be the starting position f£; xg; x 2 WŒ£; ‚�.
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Problem 2.7.1 may be solved by calculating the set WŒ£; ‚�. Clearly,

WŒ£; ‚� D
[

fW .£; ª; M / j ª 2 ‚g: (2.95)

Let

V.£; x/ D min
ª

fV.£; x j ª; V .ª; �// j ª 2 ‚g; (2.96)

with V.£; x j ª; V .ª; �// taken from (2.55). That is,

V.£; x/ D

D min
u

min
ª

fd2.xŒª�; M / j xŒ£� D x; ª 2 ‚g D min
ª

min
u

fd2.xŒª�; M / j xŒ£� D x; ª 2 ‚g:
(2.97)

Lemma 2.7.1.

WŒ£; ‚� D fx W V.£; x/ � 0g: (2.98)

Returning to formula (2.55), introduce the notation

V.£; ª; x/ D min
u

fd 2.xŒª�; M / j xŒ£� D xg:

Hence

V.£; x/ D min
ª

fV.£; ª; x/ j ª 2 ‚g D V.£; ª0; x/;

where ª0 D ª0.£; x/: The solution to Problem 2.7.2 is now reduced to Problem 2.6.1
with ª D ª0:

Exercise 2.7.1. Solve Problem 2.7.2 in detail, by applying the scheme of Sect. 2.6
to WŒ£; ‚�:

The notion of strong invariance is applicable also to reachability within an
interval.

Definition 2.7.1. A set WsŒ£; ‚� is strongly invariant relative to set M within
interval ‚, if for each of its points x the entire reach set X .ª; £; x/ D X Œª� 	 M
for some ª 2 ‚:

If WsŒ£; ‚� contains all such points, then it is said to be the maximal strongly
invariant set relative to M , within interval ‚.
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Define value function

Vs.£; x/ D min
ª

fVs.£; ª; x/ j ª 2 ‚g; (2.99)

Vs.£; ª; x/ D max
u

fd.x.ª/; M / j u.�/ 2 P .�/; x.£/ D xg:

Lemma 2.7.2. WsŒ£; ‚� is the level set

WsŒ£; ‚� D fx W Vs.£; x/ � 0g: (2.100)

Denoting Ws.£; ª; M / D fx W Vs.£; ª; x/ � 0g, we have

WsŒ£; ‚� D
[

fWs.£; ª; M / j ª 2 ‚g:

Following (2.63), we also have (for ª fixed)

@Vs.t; ª; x/

@t
C max

u

��
@Vs.t; ª; x/

@x
; A.t/x C B.t/u

	�
D 0; (2.101)

with boundary condition

d.x; M / D Vs.ª; ª; x/: (2.102)

Let us now find the support function ¡.l j Ws.£; ª; M //: Following the scheme of
calculating (2.78), (2.80), but with minu substituted for maxu, we get

Vs.£; ª; x/ D max
l

fˆsŒ£; ª; x; l� j hl; li � 1g; (2.103)

with

ˆsŒ£; ª; x; l� D hs.£; ª; l/; xi C
Z ª

£

¡.s.t; ª; l/ j B.t/P .t//dt � ¡.l j M /:

Hence

Ws.£; ª; M / D fx W ˆsŒ£; ª; x; l� � 0g

for all hl; li � 1 and therefore, since the function ˆsŒ£; ª; x; l� is homogeneous in
l , also for all l 2 Rn:

After a substitution similar to (2.71) we observe that 8x 2 Ws.£; ª; M /,

hl; xi � ¡.l j G.t; ª/M / �
Z ª

t

¡.l j G.t; Ÿ/B.Ÿ/P .Ÿ//dŸ D k.t; ª; l/: (2.104)

This yields the next result.
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Lemma 2.7.3. If k.t; ª; l/ is convex in l , one has

¡.l j Ws.£; ª; M // D k.t; ª; l/;

while in the absence of convexity in l one has

¡.l j Ws.£; ª; M // D k��.t; ª; l/ (2.105)

where the second conjugate is taken in the variable l .

This lemma follows from a well-known result in convex analysis on lower
envelopes of convex functions (see [237, 238]). Namely, the second Fenchel
conjugate k��.t; ª; l/ is the lower convex envelope of k.t; ª; l/ in the variable l .
This means epigraph epi k��

l in the variable l is the convex hull of the set epi kl .
Recall that the epigraph of a function k.l/ is the set of points lying “above” the
graph of k:

epi k WD ffl; ’g 2 Rn � R W ’ � k.l/g:

Theorem 2.7.1. The value function Vs.£; x/, (2.99), that determines WsŒ£; ‚�

through (2.100) is given by (2.101)–(2.103).

The next item is reachability within an interval (see Remark 1.4.2).

Definition 2.7.2. The reach set XŒ‚� D X.‚; t0; X 0/ of system (1.44) under
constraint u.s/ 2 P .s/; s � t0; within given time-interval ‚ D Œ’; “�; “ �
’ � t0, from set-valued position ft0; X 0g, is the set of all points x, for each of
which there exists a trajectory xŒs� D x.s; t0; x0/, for some x0 2 X 0; generated
by some control subjected to the given constraint, that transfers the system from
position ft0; x0g to position fª; xg; x D xŒª�, for some ª 2 ‚:

XŒ‚� D X.‚; t0; X 0/ D fx W 9 x0 2 X 0; u.�/ 2 P .�/; ª 2 ‚; x D x.ªI t0; x0/g:

Problem 2.7.3. Find the reach set XŒ‚�:

Denote

V0.‚; x/ D minfV0.ª; x j t0; V0.t0; �// j ª 2 ‚g; (2.106)

where V0.ª; x j t0; V0.t0; �// is taken from (2.48).
That is,

V0.‚; x/ D min
u

fmin
ª

fd 2.xŒ£�; X 0/ j x D xŒª�; ª 2 ‚gg D (2.107)

D min
ª

fmin
u

fd 2.xŒ£�; X 0/ j x D xŒª�g j ª 2 ‚g:
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Lemma 2.7.4. The reach set XŒ‚� within a given time interval ‚ is the level set

XŒ‚� D fx W V0.‚; x/ � 0g: (2.108)

The exact calculation of sets XŒ‚�; WŒ£; ‚� may be achieved through formu-
las (2.106), (2.96) applied to functions V0.£; x/; V .£; x/ given in (2.68), (2.77).

Reachability from a Tube

Consider a tube f‚0; X 0.�/g D ft; x W t 2 ‚0 D Œt 0; t 00�; x 2 X 0.t/g where compact
set-valued function X 0.t/ is Hausdorff-continuous on ‚0:

Definition 2.7.3. The reachability set XŒ‚; ‚0� D X .‚; ‚0; X 0.�//; ‚ \ ‚0 ¤ ¥,
from tube f‚0; X 0.�/g within given time-interval ‚ is the union

XŒ‚; ‚0� D
[

fx.ª; t0; x0/ j ª 2 ‚; t0 2 ‚0; x0 2 X 0.t0/g:

Problem 2.7.4. Find the reach set XŒ‚; ‚0�:

Taking

V0.‚; ‚0; x/ D min
u

fmin
ª;t0

fd 2.xŒt0�; X 0.t0// j xŒª� D x; ª 2 ‚; t0 2 ‚0gg D
(2.109)

D min
ª;t0

fmin
u

fd 2.xŒt0�; X 0Œt0�/ j xŒª� D xg j ª 2 ‚; t0 2 ‚0gg

we come to the next relation.

Lemma 2.7.5. The reach set from given tube ‚0 within given interval ‚ is the level
set

XŒ‚; ‚0� D fx W V0.‚; ‚0; x/ � 0g: (2.110)

Sets WŒ£; ‚�; XŒ‚� of course need not be convex.

The Total Reachability Sets

Definition 2.7.4. The total backward reachability set from position fª; M g is the
union

W�Œª� D W�.ª; M / D
[

fW .£; ª; M / j £ 2 .�1; ª�g:
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This is the set of all points from which set M may be reached at time ª from
some finite £ 2 .�1; ª�. For an autonomous system the set W�Œª� does not depend
on ª.

Denote V�.ª; x/ D inf£fV.£; xjª; V .ª; �// j £ 2 .�1; ª�g; V .ª; x/ D
d 2.x; M /.

Lemma 2.7.6. The total backward reachability set W�Œª� is the level set

W�Œª� D fx W V�.ª; x/ � 0g:

Definition 2.7.5. The total forward reachability set XCŒt0� from position ft0; X 0g
is the union

XCŒt0� D XC.t0; X 0/ D
[

fX .ª; t0; X 0/ j ª 2 Œt0; 1/g:

This is the set of all points that can be reached at some time ª � t0. For an
autonomous system the set XCŒt0� does not depend on t0.

Denote VC.t0; x/ D inffV0.ª; x jt0; V0.t0; �// j ª 2 Œt0; 1/g; where V0.t0; x/ D
d 2.x; X 0/:

Lemma 2.7.7. The total reachability set XCŒt0� is the level set

XCŒt0� D fx W VC.t0; x/ � 0g:

Exercise 2.7.2. For a linear autonomous system (1.44) with u.t/ 2 P D
const; 0 2 intP and X 0 6D f0g given, describe conditions when XC D XCŒ0� D
Rn and when XC ¤ Rn.

Exercise 2.7.3. Suppose in Definition 2.7.2 we have ‚ D Œt0; ¢�. Find a direct
HJB-type relation for V0.¢; x/ D V0.‚; x/ without reducing it to (2.106).

2.8 Dynamic Programming: Time-Optimal Control

We shall now use the notion of reachability to solve the problem of closed-loop
time-optimal control.

Problem 2.8.1. Given system (2.25), hard bound u 2 P , starting position ft; xg and
target set M ; x … M , find

£0.t; x/ D minf£ W x.£/ 2 M g: (2.111)

Here target set M is taken similar to the above, being convex and compact.
In particular, one may have M D fmg as an isolated point.
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The solution scheme is as follows: for the given starting position ft; xg; we
construct the reachability tube X Œ£� D X .£; t; x/; £ � t; then find the first instant
of time £�.t; x/ when X Œ£� touches M . The value £�.t; x/ � t will be the minimal
time for reaching set M from position ft; xg, namely, £�.t; x/ D £0.t; x/.

To calculate X Œ£�, recall problem (2.46), (2.47). Then

X Œ£� D fz W V0.£; z/ � 0g;

where function

V0.£; z/ D V0.£; zjt; x/ D min
u

fd 2.x.t/; x/ j x.£/ D zg

satisfies the HJB equation (2.50) with boundary condition

V0.t; z/ D d 2.z; x/:

Let us now look how to find the first instant of time, when X Œt � touches M .
From Sect. 2.3 it follows that for inclusion m 2 X Œ£� to be true it is necessary and

sufficient that V0.£; m/ D 0. Now, having noted that V0.t; m/ > 0, solve equation
V0.£; m/ D 0 and find the smallest root £0 > t of this equation. The number £0

exists if point m is reachable in finite time.
Suppose set M D fmg; then £0 D £0.t; x/ is already the solution to

Problem 2.8.1. If not, consider equation

minfV0.£; m/ j m 2 M g D f .£/ D 0; (2.112)

Here f .£/ D f .£ j t; x/ > 0 and f .£/ D 0 for some £ > 0, provided set M is
reachable in finite time.5

Taking the smallest root £0.t; x/ of equation

f .£ j t; x/ D 0; (2.113)

we come to the solution of Problem 2.8.1.

Theorem 2.8.1. The solution of Problem 2.8.1 is the smallest root £0.t; x/ of
Eq. (2.113).

In order to better understand Eq. (2.113) we look at a simple example.

5 A closed set Q is said to be reachable in finite time if the intersection Q \ XC.t; x/ 6D ; for
some £ > t . Here XC.t; x/ is the total (forward) reachability set from position ft; xg:
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Example 8.1

Consider the one-dimensional system

Px D u C f .t/; juj � �;

with target set M D m D f0g:
The value function V0.t; z/ for this case, calculated according to (2.77), is as

follows:

V0.t; z/ D min
u

fd.x.0/; x/ j x.t/ D zg D

D max
l

fl.z � x/ � �

Z t

0

jl jds �
Z t

0

lf .s/ds j jl j � 1g:

This gives:

V0.t; z/ D
�

z � x � �t � R t

0
f .s/ds if z > x C R t

0
f .s/ds;

�z C x � �t C R t

0
f .s/ds if z < x C R t

0
f .s/ds:

Fig. 2.4 Discontinuity of optimal time £0 in x
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Now, take for x > 0

f .t/ D
8<
:

0 if 0 � t � x=�;

.� C –/ if 1 C x=� > t > x=�; – > 0;

�r if t � 1 C x=�; r > 0:

Then one may notice that the minimal time for reaching m D 0 is £0.t; x/ D
x=�. However, with starting position ft; x�g instead of ft; xg, where x� D x C • >

x; • > 0; the minimal time will be £0.t; x�/ D £0.t; x/ C 1 C .– C •/=.r C �/.
Hence, function £0.t; x/ is discontinuous in x. This example yields the next remark.

Remark 2.8.1. In general the minimal time £0.t; x/ is not robust relative to the
starting point x.

Exercise 2.8.1. Indicate additional conditions for Problem 2.8.1 that ensure conti-
nuity of function £0.t; x/ in ft; xg (Fig. 2.4).



Chapter 3
Ellipsoidal Techniques: Reachability
and Control Synthesis

Abstract This chapter describes the ellipsoidal techniques for control problems
introduced in earlier chapters. We derive formulas for reachability sets using the
properties of ellipsoids and relations from convex analysis. The formulas are derived
through inductive procedures. They allow calculation of both external and internal
ellipsoidal approximations of forward and backward reachability sets with any
desired level of accuracy. The approximations are illustrated on examples explained
in detail, then followed by ellipsoid-based formulas for problems of reachability and
control synthesis.

Keywords Ellipsoidal approximations • Parametrization • Parallel calculation •
Ellipsoidal maximum principle • Reachability • Control synthesis

In this chapter we begin to apply ellipsoidal techniques to problems of control. We
consider systems that operate in the absence of uncertainty. We propose methods
to represent trajectory tubes for controlled systems through parameterized varieties
of ellipsoidal-valued tubes which achieve external and internal approximation of
set-valued solution functions with any desired accuracy. This is done by using
intersections and unions of a finite number of ellipsoidal tubes. Then, by appropri-
ately tending the number of approximating ellipsoids to infinity, one may approach
the exact solutions. We describe the construction of forward and backward set-
valued trajectories of reach sets (with these being taken either at given instants of
time or calculated for preassigned time-intervals). The routes for constructing the
external and internal ellipsoidal approximations employ algorithms that are based
on recurrent procedures. They do not require to be calculated “afresh” for any new
instant of time. The structure of the suggested solutions also allows their natural
parallelization. The results of Sects. 3.1–3.11 of this chapter are based on those
given in [177, 181, 182]. On the other hand, for the problem of internal ellipsoidal
approximations there exists a “second approach” which introduces other formulas
than in Sects. 3.7–3.10. A concise review of this approach is given in Sect. 3.12.
The “second approach” may also be recommended as a solution tool for problems
of reachability and control synthesis. This approach was discussed in [45, 174].
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We thus start to introduce an array of methods for treating trajectory tubes rather
than isolated trajectories. Of special importance are methods that permit systems of
high dimensions in limited time. Such types of examples are presented in Chap. 4,
being solved with the aid of the ellipsoidal toolbox, [132].

3.1 Linear Systems Under Ellipsoidal Constraints

Consider the linear time-variant system model (1.1) described as

Px.t/ D A.t/x.t/ C B.t/u C f .t/: (3.1)

The values u of the controls are restricted for almost all t by hard bounds

u 2 Q .t/; (3.2)

where Q .t/ is a set-valued function Q W T ! convRq , Hausdorff-continuous in t ,
f .t/ is a given integrable function.

Considering all the possible functions of time u.t/; t 2 T ,—the open-loop
controls—restricted by constraint (3.2), we came to a linear differential inclusion

Px.t/ 2 A.t/x.t/ C B.t/Q .t/ C f .t/ (3.3)

under condition

x.0/ D x.t0/ 2 X 0;

where X 0 2 convRn.
In this chapter we further restrict the constraints on u; x0 to be ellipsoidal-valued,

namely:

< u � q.t/; Q�1.t/.u � q.t// >� 1; (3.4)

and

< x.0/ � x0; .X0/�1.x.0/ � x0/ >� 1; (3.5)

where continuous functions q.t/ and vector x0 are given together with continuous,
positive, symmetric matrix-valued function Q0.t/ D Q.t/ > 0 and matrix .X0/0 D
X0 > 0. Here the respective ellipsoids are nondegenerate.

In terms of inclusions we have

u 2 E.q.t/; Q.t//; (3.6)

x.t0/ D x.0/ 2 E.x0; X0/; (3.7)
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or, in terms of support functions, the inequalities

< l; u >�< l; q.t/ > C < l; Q.t/l >
1
2 ; (3.8)

< l; x.0/ >�< l; x0 > C < l; X0l >
1
2 ; (3.9)

8l 2 Rn :

Remark 3.1.1. Note that constraints in the form (3.8), (3.9) also allow degenerate
matrices Q.t/ � 0; X0 � 0. In this case ellipsoids E.q.t/; Q.t// or E.x0; X0/ turn
out to be elliptical cylinders. This case will be discussed separately in Chap. 4.

Let us now start with the reachability issue described in Chap. 1, Sect. 1.4. Note
that we further take q.t/ 6D 0 and presume f .t/ � 0, since keeping it here does not
add much to the procedure. The case f .t/ 6D 0 will be important in Chap. 10, while
considering systems under uncertainty.

The reach set X Œ£� may be treated as the cut X Œ£� D X .£; t0; E.x0; X0// of the
solution tube X .�/ D fX Œt � W t � t0g to the differential inclusion .t � t0/;

Px 2 A.t/x C E.B.t/q.t/; B.t/Q.t/B 0.t//; x.0/ 2 E.x0; X0/: (3.10)

The reach set X .t; t0; E.x0; X0// may also be presented through a set-valued
(“Aumann”) integral (see [9]).

Lemma 3.1.1. The following relation is true

X .t; t0; E.x0; X0// D x?.t/ C G.t; t0/E.0; X0/ C
Z t

t0

G.t; s/E.0; B.s/Q.s/B 0.s//ds;

(3.11)
where

x?.t/ D G.t; t0/x0 C
Z t

t0

G.t; s/B.s/q.s/ds: (3.12)

A standard direct calculation indicates

Lemma 3.1.2. The support function

¡.l jX .t; t0; E.x0; X0// D (3.13)

< l; x?.t/ > C < l; G.t; t0/X0G0.t; t0/l >1=2 C

C
Z t

t0

< l; G.t; s/B.s/Q.s/B 0.s/G0.t; s/l >1=2 ds:

A direct consequence of the last representation leads to the next fact.
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Lemma 3.1.3. The reach set X Œt � D X .t; t0; E.x0; X0// is a convex compact set in
Rn that evolves continuously in t .

The continuity in time of a convex compact set X Œt � is understood here as the
continuity in time of the support function ¡.l jX Œt �/ uniformly in l W< l; l >� 1.
For an ellipsoidal-valued function E.q.t/; Q.t// continuity means that the center
q.t/ and “shape matrix” Q.t/ are continuous.

An obvious consequence of Corollary 1.3.1 is the next property.

Lemma 3.1.4. System (3.1) with f .t/ D 0; is completely controllable iff the
quadratic form

WQ.£; ¢/ D
Z £

¢

< l; G.£; s/B.s/Q.s/B 0.s/G0.£; s/l > ds; l 2 Rn;

is positive definite for any £ > ¢ , provided Q.s/ D Q0.s/ > 0:

The boundary @X Œ£� of set X Œ£� may be here defined as @X Œ£� D X Œ£� n intX Œ£�.
Under the controllability condition of the above lemma set X Œ£� has a non-void
interior intX Œ£� 6D ; for £ > t0.

We further assume the following property.

Assumption 3.1.1. The symmetric matrix WQ.£; ¢/ is positive definite whenever
£ > ¢ .

Points on the boundary of the reach set X Œt � satisfy some important properties.
Namely, consider point x� 2 @X Œ£�. Then there exists a related support vector l�
such that

< l�; x� >D ¡.l�jX Œ£�/ D maxf< l�; x > jx 2 X Œ£�g: (3.14)

Denote u D u�.t/ to be the control which transfers system (3.10) from state
x.t0/ D x.0/ to x.£/ D x�. Then the Maximum Principle of Sect. 2.5 appears as
follows [120, 195, 226].

Theorem 3.1.1. Suppose the state x.£/ D x� is given and x� 2 @X Œ£�. Then
the control u D u�.t/ and the initial state x.t0/ D x.0/; which yield the unique
trajectory x�.t/ that reaches point x� D x�.£/ from point x.0/ D x.t0/; and ensures
relations (3.14), satisfy the following “maximum principle” for the control:

< l�; G.£; t/B.t/u�.t/ >D (3.15)

D maxf< l�; G.£; t/B.t/u > ju 2 E.q.t/; Q.t//g D

D< l�; G.£; t/B.t/q.t/ > C < l�; G.£; t/B.t/Q.t/B 0.t/G0.£; t/l� >1=2



3.2 Ellipsoidal Approximation of Reach Sets 91

for all t 2 Œt0; £�, and the “maximum” (transversality) condition for the initial state:

< l�; G.£; t0/x.0/ >D maxf< l�; x > jx 2 G.£; t0/E.x0; X0/g D (3.16)

D< l�; G.£; t0/x0 > C < l�; G.£; t0/X0G0.£; t0/l� >1=2 :

Here l� is the support vector for set X Œt � at point x� that satisfies relation (3.14).

The product l 0G.£; t/ D sŒt � D s.t; £; l/ may be presented as the backward solution
to the “adjoint system”

Ps D �sA.t/; sŒ£� D l 0;

where s is a row-vector.

Remark 3.1.2. The ellipsoidal nature of the constraints on u.t/; x.0/ yield unique-
ness of the optimal control and trajectory. (Prove this fact.)

3.2 Ellipsoidal Approximation of Reach Sets

Observe that although the initial set E.x0; X0/ and the control set E.q.t/; Q.t//

are ellipsoids, the reach set X Œt � D X .t; t0; E.x0; X0// will not generally be an
ellipsoid. (Since already the sum of two ellipsoids, E1 C E2, is generally not an
ellipsoid.)

As indicated in [174], the reach set X Œt � may be approximated both externally
and internally by ellipsoids E� and EC, with E� 	 X Œt � 	 EC.

Definition 3.2.1. An external approximation EC of a reach set X Œt � is tight if there
exists a vector l 2 Rn such that

¡.˙l jEC/ D ¡.˙l jX Œt �/:

The last definition is relevant for reach sets which are compact convex bodies,
symmetrical around the center x?.t/ (see formula (3.14) of the above). However it
does not produce a unique ellipsoid. A more precise notion is given through the next
definitions, where tightness is defined within a certain subclass EC of ellipsoids that
does not coincide with the variety of all possible ellipsoids.

Definition 3.2.2. An external approximation EC is tight in the class EC, if for any
ellipsoid E 2 EC, the inclusions X Œt � 	 E 	 EC imply E D EC.

This paper is concerned with external approximations, where class EC D fECg
is described through the following definition.



92 3 Ellipsoidal Techniques: Reachability and Control Synthesis

Definition 3.2.3. The class EC D fECg consists of ellipsoids that are of the form
ECŒt � D E.x?; XCŒt �/, where x?.t/ satisfies the equation1

Px? D A.t/x? C B.t/q.t/; x?.t0/ D x0; t � t0; (3.17)

and

XCŒt � D XC.t jpŒ��/ D (3.18)

D
�Z t

t0

p.s/ds C p0.t/

��Z t

t0

p�1.s/G.t; s/B.s/Q.s/B 0.s/G0.t; s/ds

Cp�1
0 .t/G.t; t0/X0G0.t; t0/

�
:

Here X0; Q.s/; s 2 Œt0; t � are any positive definite matrices with function Q.s/

continuous, q.t/ is any continuous function, p.s/ > 0; s 2 Œt0; t �; is any integrable
function and p0.t/ > 0.

In particular, this means that if an ellipsoid E.x?; X�C/ 
 X Œt � is tight in EC, then
there exists no other ellipsoid of type E.x?; kX�C/; k � 1 that satisfies the inclusions
X Œt � � E.x?; kX�C/ � E.x?; X�C/ (ellipsoid E.x?; X�C/ touches set X Œt �).

Definition 3.2.4. We further say that external ellipsoids are tight if they are tight
in EC.

Functions p.t/ are parameterizing parameters which generate the class EC of
approximating ellipsoids and we actually further deal only with ellipsoids EC 2 EC.
For problems of this book Definition 3.2.1 is motivated by 3.2.4, so we usually apply
Definition 3.2.1, only within the class EC. Then, however, with direction l given,
the related tight ellipsoid will be unique.

The class EC is rich enough to arrange effective approximation schemes, though
it does not include all possible ellipsoids. In fact, all the schemes of books [44,174]
on external ellipsoids actually do not go beyond the class EC. A justification for
using class EC is due to the next proposition.

Theorem 3.2.1. The following inclusions are true:

X Œt � 	 E.x?.t/; XC.t jpŒ��//; 8p0; p.s/ > 0; t0 � s � t: (3.19)

Moreover,

X Œt � D \fE.x?.t/; XC.t j pŒ��/jp0; p.s/ > 0; s 2 Œt0; t �g: (3.20)

1In the following formulas symbol pŒ�� stands for the pair fp0; p.s/; s 2 Œt0; t �g.
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Relations (3.19), (3.20) are true for all p0 � 0 and p.s/ ranging over all
continuous positive functions. These results follow from ellipsoidal calculus (see
[174], Sects. 2.1, 2.7). What also holds is the following characterization of tight
external ellipsoids.

Theorem 3.2.2. For a given time £ the tight external ellipsoids ECŒ£� D
E.x?.£/; XCŒ£�/, with ECŒ£� 2 EC, are those for which the functions p and
p0 are selected as

p.s/ D< l; G.£; s/B.s/Q.s/B 0.s/G0.£; s/l >1=2; t0 � s � £; (3.21)

p0.£/ D< l; G.£; t0/X0G0.£; t0/l >1=2; (3.22)

with vector l given. Each ellipsoid ECŒ£� touches X Œ£� at points

fx� W< l; x� >D ¡.l jX Œ£�/g;

so that

¡.l jX Œ£�/ D< l; x?.£/ > C < l; XCŒ£�l >1=2D ¡.l jE.x?.£/; XCŒ£�//:

Remark 3.2.1. Note that the result above requires the evaluation of the integrals
in (3.18) for each time £ and vector l . If the computation burden for each evaluation
of (3.18) is C , and we estimate the reach tube via (3.19) for N values of time £ and
L values of l , the total computation burden would be C � N � L. A solution to the
next problem would reduce this burden to C � L.

Problem 3.2.1. Given a unit-vector function l�.t/; < l�; l� >D 1, continuously
differentiable in t , find an external ellipsoid E�CŒt � 
 X Œt � that would ensure for all
t � t0; the equality

¡.l�.t/jX Œt �/ D ¡.l�.t/jECŒt �/ D< l�.t/; x�.t/ >; (3.23)

so that the supporting hyperplane for X Œt � generated by l�.t/, namely, the plane
hx � x�.t/; l�.t/i D 0 that touches X Œt � at point x�.t/, would also be a supporting
hyperplane for E�CŒt � and touch it at the same point.

This problem is solvable in the class EC. In order to solve it, we first make use
of Theorem 3.2.1. However, the function p.s/ and vector p0 (3.21), (3.22), used for
the parametrization in (3.18), will now depend on an additional variable t , so that
p.s/ D pt .s/ will be a function of two variables, s; t , and p0 D p0.t/—since the
requirement is that relation (3.23) should now hold for all t � t0.
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Theorem 3.2.3. With l.t/ D l�.t/ given, the solution to Problem 3.2.1 is an
ellipsoid ECŒt � D E.x?.t/; X�CŒt �/, where

X�CŒt � D (3.24)

�Z t

t0

p�
t .s/ds C p�

0 .t/

��Z t

t0

.p�
t .s//�1G.t; s/B.s/Q.s/B 0.s/G0.t; s/ds

Cp��1
0 .t/G.t; t0/X0G0.t; t0/

�
;

and

p�
t .s/ D< l�.t/; G.t; s/B.s/Q.s/B 0.s/G0.t; s/l�.t/ >1=2; (3.25)

p�
0 .t/ D< l�.t0/; G.t; t0/X0G0.t; t0/l�.t0/ >1=2 :

The proof is obtained by direct substitution, namely, by substituting (3.25)
into (3.24) and further comparing the result with (3.13), (3.23). Rela-
tions (3.24), (3.25) need to be solved “afresh” for each t . It may be more convenient
for computational purposes to have them given in the form of recurrent relations
generated through differential equations.

Remark 3.2.2. In all the ellipsoidal approximations considered in this book the
center of the approximating ellipsoid is always the same, being given by x?.t/

of (3.17).

The discussions in the next section will therefore actually concern only the relations
for the matrices XCŒt �; X�CŒt � of these ellipsoids .x?.t/ � 0/.

3.3 Recurrent Relations: External Approximations

We start with a particular case.

Assumption 3.3.1. The function l�.t/ is of the following form l�.t/ D G0.t0; t/l ,
with l 2 Rn given. For the time-invariant case l�.t/ D e�A0.t�t0/l .

Such curves l.t/ will be further referred to as “good ones.” Under Assumption 3.3.1
the vector l�.t/ may be expressed as the solution to equation

Pl� D �A0.t/l�; l�.t0/ D l;

which is the adjoint to the homogeneous part of Eq. (1.1).
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Then p�
t .s/; p�

0 .t/; X�CŒt � of (3.24), (3.25) transform into

p�
t .s/ D (3.26)

D< l; G.t0; s/B.s/Q.s/B 0.s/G0.t0; s/l >1=2D p�.s/I p�
0 .t/ D< l; X0l >1=2D p�

0 ;

and

X�CŒt � D G.t; t0/XC.t/G0.t; t0/; (3.27)

XCŒt � D
�Z t

t0

p�.s/ds C p�
0

�
‰.t/; (3.28)

where

‰.t/ D

D
Z t

t0

< l; G.t0; s/B.s/Q.s/B 0.s/G0.t0; s/l >�1=2 G.t0; s/B.s/Q.s/B 0.s/G0.t0; s/dsC

C < l; X0l >�1=2 X0:

In this particular case p�
t .s/ does not depend on t (p�

t 0.s/ D p�
t 00.s/ for t 0 6D t 00) and

the lower index t may be dropped.
Direct differentiation of XCŒt � yields

PXCŒt � D (3.29)

D ��.t/XCŒt � C ���1.t/G.t0; t/B.t/Q.t/B 0.t/G0.t0; t/; XCŒt0� D X0;

where

��.t/ D p�.t/

�Z t

t0

p�.s/ds C p�
0

��1

:

Calculating

< l; XCŒt �l >D
�Z t

t0

p�.s/ds C p�
0

�
< l; ‰.t/l >D

�Z t

t0

p�.s/ds C p�
0

�2

;

one may observe that

��.t/ D< l; G.t0; t/B.t/Q.t/B 0.t/G0.t0; t/l >1=2< l; XCŒt �l >�1=2 : (3.30)
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In order to pass to the matrix function X�CŒt � we note that

PX�CŒt � D A.t/G.t; t0/XCŒt �G0.t; t0/CG.t; t0/XCŒt �G0.t; t0/A0.t/CG.t; t0/ PXCŒt �G0.t; t0/:

After a substitution from (3.29) this gives

PX�C D A.t/X�C C X�CA0.t/C (3.31)

C��.t/X�C C ���1.t/B.t/Q.t/B 0.t/; X�C.t0/ D X0:

We shall denote the ellipsoid constructed with matrix X�C.t/ described by
Eqs. (3.31), (3.30), as E.x?.t/; X�C.t//. We now summarize the last results.

Theorem 3.3.1. Under Assumption 3.3.1 the solution to Problem 3.2.1 is given by
the ellipsoid E�CŒt � D E.x?.t/; X�CŒt �/, where x?.t/ satisfies Eq. (3.17) and X�CŒt �

is a solution to Eqs. (3.31), (3.30).

Since set X�CŒt � depends on vector l 2 Rn, we further denote X�CŒt � D X�CŒt �l ,
using it in the following text whenever it will be necessary.

Theorem 3.3.2. For any t � t0 the reach set X Œt � may be described as

X Œt � D \fE.x?; X�CŒt �/j l W< l; l >D 1g: (3.32)

This is a direct consequence of Theorem 3.2.2 and of the selection of good curves
for representing the solution. Differentiating ��.t/, according to (3.30), we arrive
at the next result.

Corollary 3.3.1. If B.t/ � B � const and function ��.t/ is differentiable, then it
satisfies the differential equation

P�� D f .t/�� � ��2; �.t0/ D 1; (3.33)

where

f .t/ D < l; G.t0; t/.�A.t/B.t/Q.t/B 0.t/ � B.t/Q.t/B 0.t/A0.t/ C B.t/ PQ.t/B 0.t//G0.t0; t/l >

2 < l; G.t0; t/B.t/Q.t/B 0.t/G0.t0; t/l >
:

Corollary 3.3.2. With A; B D const; Q.t/ D Q D const , and l being an
eigenvector of A0 .A0l D œl/, with real eigenvalue œ, the function f .t/ will be

f .t/ D �œ:

Thus, if l�.t/ satisfies Assumption 3.3.1, the complexity of computing a tight,
external ellipsoidal approximation to the reach set for all t , is the same as computing
the solution to the differential equation (3.31).
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In the general case, differentiating relation (3.24) for X�CŒt �, we have

PX�CŒt � D

D
�

p�
t .t /C

Z t

t0

.@p�
t .s/=@t/dsC Pp�

0

��Z t

t0

p��1
t .s/G.t; s/B.s/Q.s/B 0.s/G0.t; s/ds

Cp��1
0 .t/G.t; t0/X0G0.t; t0/

�

C
�Z t

t0

p�
t .s/ds C p�

0 .t/

��
.p�

t .t //�1B.t/Q.t/B 0.t/C

Z t

t0

.@..p�
t .s//�1G.t; s/B.s/Q.s/B 0.s/G0.t; s//=@t/dsC

Cd.p��1
0 .t/G.t; t0/X0G0.t; t0//=dt

�
;

which, using the notations

X�CŒt � D

D
�Z t

t0

p�
t .s/ds C p�

0 .t/

��Z t

t0

.p�
t .s//�1

G.t; s/B.s/Q.s/B 0.s/G0.t; s/ds C p��1
0 .t/G.t; t0/X0G0.t; t0/

�
;

��.t/ D p�
t .t /

�Z t

t0

p�
t .s/ds C p�

0 .t/

��1

; (3.34)

gives

PX�C D (3.35)

D A.t/X�C C X�CA0.t/ C ��.t/X�C C ���1.t/B.t/Q.t/B 0.t/

CG.t; t0/¥.t; l.t/; B.�/Q.�/B 0.�//G0.t; t0/;

X�C.t0/ D X0:
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Here

¥.t; l.t/; B.t/Q.�/B 0.t// D (3.36)

D
�Z t

t0

.@p�
t .s/=@t/ds C Pp�

0 .t/

��Z t

t0

.p�
t .s//�1P.t0; s/ds C .p�

0 .t//�1P0

�
C

C
�Z t

t0

p�
t .s/ds Cp�

0 .t/

��Z t

t0

.@.p�
t .s//�1=@t/P.t0; s/ds C.d.p�

0 .t//�1=dt/P0

�

and

P.t0; s/ D G.t0; s/B.s/Q.s/B 0.s/G0.t0; s/; P0 D X0:

It is important to note that under Assumption 3.3.1 (l�.t/ D G0.t0; t/l) the terms
@p�

t .s/=@t D 0; Pp�
0 .t/ D 0, so that ¥.t; l.t/; B.�/Q.�/B 0.�// D 0.

Recall that an external ellipsoid constructed in the general case, with X�C.t/

taken from Eq. (3.35), (3.34), is denoted as E�.x?.t/; X�C.t//, in contrast with an
ellipsoid constructed along good curves, with X�C.t/ taken from Eqs. (3.31), (3.30)
and denoted earlier as E�CŒt �:

Theorem 3.3.3. The solution E�CŒt � D E.x?.t/; X�C.t// to Problem 3.2.1 is given
by vector function x?.t/ of (3.17) and matrix function X�C.t/ that satisfies Eq. (3.35),
with ��.t/ defined in (3.34) and p�

t .s/; p�
0 .t/ in (3.25). Under Assumption 3.3.1

Eq. (3.35) appears with term ¥ � 0.

Throughout the previous discussion we have observed that under Assump-
tion 3.3.1 the tight external ellipsoidal approximation E.x?.t/; X�C.t// is governed
by the simple ordinary differential equations (3.31). Moreover, in this case the
points xl .t/ of support for the hyperplanes generated by vector l.t/ run along a
system trajectory of (3.1) which is generated by a control that satisfies the Maximum
Principle (3.15) and the relation (3.16) of Theorem 3.1.1.

In connection with this fact the following question arises:

Problem 3.3.1. Given is a curve l.t/ such that the supporting hyperplane generated
by vectors l.t/ touches the reach set X Œt � at the point of support xl.t/. What should
be the curve l.t/, so that xl.t/ would be a system trajectory for (3.1)?

Let us investigate this question when x0 D 0; q.t/ � 0: Suppose a curve l.t/ is
such that (xl0

t D xl.t0/)

xl.t/ D G.t; t0/xl0
t C

Z t

t0

G.t; £/B.£/ut .£/d£ (3.37)

is a vector generated by the pair fxl0
t ; ut .�/g. In order that xl .t/ be a support vector

to the supporting hyperplane generated by l.t/ it is necessary and sufficient that this
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pair satisfy at each time t the maximum principle (3.15) and the condition (3.16)
under constraints

xl0
t 2 E.0; X0/; ut .£/ 2 E.0; Q.£//;

which means

ut .£/ D Q.£/B 0.£/G0.t; £/l.t/

hl.t/; G.t; £/B.£/Q.£/B 0.£/G0.t; £/l.t/i1=2
; (3.38)

with t0 � £ � t; and

xl0
t D X0G0.t; t0/l.t/

< l.t/; G.t; t0/X0G0.t; t0/l.t/ >1=2
: (3.39)

Note that since xl.t/ varies in t , the variables xl0
t D xl.t0/; ut .£/ should in general

also be taken as being dependent on t .
Now the question is: what should be the function l.t/ so that xl .t/ of (3.37)–

(3.39) is a trajectory of system (3.1)?
Differentiating (3.37), we come to

Pxl .t/ D A.t/

�
G.t; t0/xl0

t C (3.40)

C
Z t

t0

G.t; £/B.£/ut .£/d£

�
C B.t/ut .t / C Y.t/;

where

Y.t/ D G.t; t0/.@xl0
t =@t/ C

Z t

t0

G.t; £/B.£/.@ut .£/=@t/d£: (3.41)

In order that xl.t/ would be a system trajectory for (3.1) it is necessary and
sufficient that Y.t/ � 0. Here the control at time t is ut .t / and the initial position
is xl0

t .
Let us look for the class of functions l.t/ that yield Y.t/ D Yl.t/ � 0. (Since

we are about to vary the problem parameters depending on choice of l.�/, we further
denote Y.t/ D Yl.t/ and pt .£/ D pt .£; l/; p0.t/ D p0.t; l/, see below, at (3.43).)

For any t we have

Yl.t/ D G.t; t0/.@.X0G0.t; t0/l.t/.p0.t; l.t///�1/=@t/C (3.42)

C
Z t

t0

G.t; £/B.£/.@.Q.£/B 0.£/G0.t; £/l.t/.pt .£; l.t///�1/=@t/d£;
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where, as in (3.25),

pt .s; l.t// D< l.t/; G.t; s/B.s/Q.s/B 0.s/G0.t; s/l.t/ >1=2; (3.43)

p0.t; l.t// D< l.t/; G.t; t0/X0G0.t; t0/l.t/ >1=2 :

Continuing the calculation of Yl.t/, after some transformations we come to

Yl.t/ D ˆ0.t; t0; l.t//.p0.t; l.t///�3 (3.44)

C
Z t

t0

ˆ.t; £; l.t//.pt .£; l.t///�3d£;

where

ˆ0.t; t0; l/ D P0.t; t0/.A0.t/l C dl=dt/
D
l; G.t; t0/X0G0.t; t0/l

E
�

�P0.t; t0/l
�
.l 0A.t/ C dl 0=dt/P0.t; t0/l

�
;

and

ˆ.t; £; l/ D P.t; £/.l 0A.t/ C dl 0=dt/0Dl; P.t; £/l
E
�

�P.t; £/l
�
.l 0A.t/ C dl 0=dt/P.t; £/l

�
:

Here, in accordance with previous notation,

P0.t; t0/ D G.t; t0/X0G0.t; t0/; P.t; £/ D G.t; £/B.£/Q.£/B 0.£/G0.t; £/:

Let us now suppose that l.t/ satisfies the equation

dl=dt C A0.t/l D k.t/l; (3.45)

where k.t/ is a continuous scalar function. Then, by direct substitution, we observe
that Yl.t/ D 0.

On the other hand, suppose Yl.t/ � 0. Let us prove that then l.t/ satisfies
Eq. (3.45). By contradiction, suppose a function l0.t/ yields Yl0.t/ � 0, but does
not satisfy (3.45) for any k.t/ (including k.t/ � 0). Then we should have

.l 0
0.t/A.t/ C dl 0

0.t/=dt/Yl0.t/ � 0;
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so that the expression

.l 0
0.t/A.t/ C dl 0

0.t/=dt/�

�
�

ˆ0.t; t0; l0.t//.p0.t; l0.t///�3 C
Z t

t0

ˆ.t; £; l0.t//.pt .£; l0.t///�3d£

�
D

D
�

.l 0
0.t/A.t/ C dl 0

0.t/=dt/P0.t; t0/.A0.t/l0.t/ C dl0.t/=dt/ < l0.t/; P0.t; t0/l0.t/ > �

�.l 0
0.t/P0.t; t0/.A0.t/l0.t/ C dl0.t/=dt//2

�
p0.t; l0.t//�3C

C
Z t

t0

�
.l 0

0.t/A.t/ C dl 0
0.t/=dt/P.t; £/.A0.t/l0.t/ C dl0.t/=dt/ < l0.t/; P.t; £/l0.t/ > �

�..l 0
0.t/A.t/ C dl 0

0.t/=dt/P.t; £/l/2

�
.pt .£; l0.t///�3d£;

should be equal to zero. But due to the Hölder inequality (applied in finite-
dimensional version for the first term and in infinite-dimensional version for the
integral term) the above expression is equal to zero if and only if l0.t/ satisfies
relation (3.45) for some k.t/: .A0.t/l C dl.t/=dt/ is collinear with l.t/.2 This
contradicts the assumption Yl.t/ � 0 and proves the following issues.

Theorem 3.3.4. Given a curve l.t/, the function xl.t/ of (3.37)–(3.39), formed of
support vectors to the hyperplanes generated by l.t/, is a system trajectory for (3.1)
if and only if l.t/ is a solution to the differential equation (3.45).

Through similar calculations the following assertion may be proved

Theorem 3.3.5. In order that G.t; t0/¥.t; l.t/; B.�/Q.�/B 0.�//G0.t; t0/ � 0; it is
necessary and sufficient that l.t/ satisfies Eq. (3.45).

Exercise 4.1. Work out the proofs of Theorems 3.3.4, 3.3.5 in detail.

We have thus come to the condition that l.t/ should satisfy (3.45). This equation
may be interpreted as follows. Consider the transformation

lk.t/ D exp.�
Z t

t0

k.s/ds/l.t/: (3.46)

2Here we also take into account that .l 0.t/A.t/ C dl.t/=dt/Yl .t/ is bounded with p0.t/ > 0 and
pt .£/ > 0 almost everywhere due to the controllability assumption.
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Then

dlk.t/=dt D exp.�
Z t

t0

k.s/ds/d l.t/=dt � k.t/ exp.�
Z t

t0

k.s/ds/l.t/ D

D .�A0.t/ C k.t/I / exp.�
Z t

t0

k.s/ds/l.t/ � k.t/ exp.�
Z t

t0

k.s/ds/l.t/ D �A0.t/lk.t/

which means that lk.t/ is again a solution to the adjoint equation dl=dt D �A0.t/l ,
but in a new scale. However, the nature of transformation (3.46) is such that lk.t/ D
”.t/l.t/; ”.t/ > 0.

Lemma 3.3.1. The solutions lk.t/ to Eq. (3.45) generate the same support hyper-
planes to the reach set X Œt � and the same points of support xlk .t/, whatever be
the functions k.t/ (provided all these solutions have the same initial condition
lk.t0/ D l0).

In particular, with k.t/ � 0, we come to functions l.t/ of Assumption 3.3.1 and
with Al D kl (k is an eigenvalue of constant matrix A) to equation dl=dt D 0 and
to condition l.t/ D l D const:

In general the function l.t/ of Assumption 3.3.1 is not normalized so that <

l.t/; l.t/ > 6D 1. In order to generate a function lu.t/ with vectors lu.t/ of unit length,
take the substitution lu.t/ D l.t/ < l.t/; l.t/ >�1=2, where dl=dt C A0.t/l D 0.
Direct calculations indicate the following statement.

Lemma 3.3.2. Suppose function lu.t/ satisfies Eq. (3.45) with

k.t/ D< l.t/; A0.t/l.t/ >< l.t/; l.t/ >�1;

where l.t/ satisfies Assumption 3.3.1. Then < lu.t/; lu.t/ >� 1.

Remark 3.3.1. Lemma 3.3.1 indicates that the necessary and sufficient conditions
for the solution of Problem 3.3.1 do not lead us beyond the class of functions given
by Assumption 3.3.1.

Relations (3.35), (3.17), above describe the evolution of the basic parameters
x?.t/; X�CŒt � of the ellipsoids E�CŒt �. This allows to proceed with the next topic.

3.4 The Evolution of Approximating Ellipsoids

It is known that the dynamics of the reach set X Œt �; X Œt0� D E0 D E.x0; X0/ may
be described by an evolution equation for the “integral funnel” of the differential
inclusion

Px 2 A.t/x C B.t/Q .t/; (3.47)
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where Q .t/ D E.q.t/; Q.t//, so that the set-valued function X Œt � satisfies for all t

the relation

lim
©!0

©�1h.X Œt C ©�; .I C ©A.t//X Œt � C ©E.B.t/q.t/; B.t/Q.t/B 0.t/// D 0;

(3.48)
with initial condition XŒt0� D E0 [158].

Here, as before, h.Q ; M / stands for the Hausdorff distance between sets Q ; M .
Recall that

h.Q ; M / D maxfhC.Q ; M /; h�.Q ; M /g; hC.Q ; M / D h�.M ; Q /;

while the Hausdorff semidistance is defined as

h�.M ; Q / D max
x

min
z

f< x � z; x � z >1=2 jx 2 Q ; z 2 M g:

Equation (3.48) has a unique solution.
The idea of constructing external ellipsoidal approximations for X Œt � is also

reflected in the following evolution equation, where we will be interested only in
ellipsoidal-valued solutions:

lim
©!0

©�1h�.E Œt C ©�; .I C ©A.t//E Œt � C ©E.B.t/q.t/; B.t/Q.t/B 0.t/// D 0

(3.49)
with initial condition E Œt0� D E.x0; X0/ D E0.

Definition 3.4.1. A set-valued function ECŒt � is said to be the solution to
Eq. (3.49) if

(i) ECŒt � satisfies (3.49) for all t ,
(ii) ECŒt � is ellipsoidal-valued and ECŒt � 2 EC.

A solution to Eq. (3.49) is said to be minimal in EC if together with
conditions (i), (ii) it satisfies condition

(iii) ECŒt � is a minimal in EC solution to (3.49) with respect to inclusion.

Condition .i i i/ means that there is no other ellipsoid E Œt � 6D ECŒt �; E Œt � 2 EC
that satisfies both Eq. (3.49) and the inclusions ECŒt � 
 E Œt � 
 X Œt �. This also
means that among the minimal solutions ECŒt � to (3.49) there are non-dominated
(tight) ellipsoidal tubes ECŒt � that contain X Œt �. For a given initial set E0 D E Œt0�

the solutions to (3.49) as well as its minimal solutions may not be unique.

Remark 3.4.1. Note that Eq. (3.49) is written in terms of Hausdorff semidistance
h� rather than Hausdorff distance h as in (3.48).

Denote an ellipsoidal-valued tube EŒt� D E.x?.t/; XŒt �/, that starts at
ft0; E0g; E0 D E.x0; X0/ and is generated by given functions x?.t/; XŒt � (matrix
XŒt� D X 0Œt � > 0) as EŒt� D E.t jt0; E0/ D E.x?.t/; XŒt �/.

The evolution Eq. (3.49) defines a generalized dynamic system in the following
sense.
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Lemma 3.4.1. Each solution E.t jt0; E0/ D EŒt� to Eq. (3.49), in the sense of
Definition 3.4.1, defines a map with the semigroup property

E.t jt0; E0/ D E.t jE.£; jt0; E0//; t0 � £ � t: (3.50)

This follows from Definition 3.4.1. Equation (3.49) implies that a solution EŒt�

to this equation should satisfy the inclusion

EŒt C –� C o.–/B.0/ 
 .I C –A.t//EŒt � C –E.B.t/q.t/; B.t/Q.t/B 0.t//;

where –�1o.–/ ! 0 with – ! 0 and B.0/ D fx W hx; xi � 1g is the unit ball in Rn.
Further denote qB.t/ D B.t/q.t/; QB.t/ D B.t/Q.t/B 0.t/.

Given a continuously differentiable function l.t/; t � t0; and assuming that
EŒt� D E.x?.t/; XŒt �/ is defined up to time t , let us select EŒt C –� as an external
ellipsoidal approximation of the sum

Z.t C –/ D .I C –A.t//E.x?.t/; XŒt �/ C –E.qB.t/; QB.t//;

requiring that it touches this sum Z.t C –/ (which, by the way, is not an ellipsoid),
according to relation

¡.l.t C –/jEŒt C –�/ D ¡.l.t C –/jZ.t C –//; (3.51)

that is at those points z.t C–/ where Z.t C–/ is touched by its supporting hyperplane
generated by vector l.t C –/. Namely,

fz.t; –/ W< l.t C –/; z.t; –/ >D< l.t C –/; x?.t C –/ > C < l.t C –/; XŒt C –�l.t C –/ >1=2D

D< l.t C –/; x?.t C –/ > C < l.t C –/; .I C –A.t//XŒt �.I C –A.t//0l.t C –/ >1=2 C

C– < l.t C –/; QB.t/l.t C –/ >1=2 Co1.–/g:

In the latter case, according to the definitions of tightness, the ellipsoid EŒt C –�

is among the tight external approximations for Z.t C –/ (relative to terms of order
higher than –).3

The requirement above is ensured if EŒt C –� externally approximates the sum

Z.t C –/ D G.t C –; t/E.x?.t/; XŒt �/ C
Z tC–

t

G.t C –; s/E.qB.s/; QB.s//ds

3Here and in the sequel the terms of type oi .–/ are assumed to be such that oi .–/–
�1 ! 0 with

– ! 0.
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with the same criterion (3.51) as in the previous case. Select

XŒt C –� D .1 C p�1.t C –//G.t C –; t/XŒt �G0.t C –; t/C (3.52)

–2.1 C p.t C –//G.t C –; t/QB.t/G0.t C –; t/;

where

p.t C –/ D < l.t C –/; G.t C –; t/XŒt �G0.t C –; t/l.t C –/ >1=2

– < l.t C –/; G.t C –; t/QB.t/G0.t C –; t/l.t C –/ >1=2
: (3.53)

Indeed, with p.t C–/ chosen as in (3.53), a direct substitution of p.t C–/ into (3.52)
gives

< l.tC–/; XŒtC–�l.tC–/ >1=2D< l.tC–/; G.tC–; t/XŒt �G0.tC–; t/l.tC–/ >1=2 C
(3.54)

C– < l.t C –/; G.t C –; t/QB.t/G0.t C –; t/l.t C –/ >1=2 :

Estimating the Hausdorff distance

R.t; –/ D h

�Z tC–

t

G.t C –; s/E.0; QB.s//ds; –2G.t C –; t/QB.t/G0.t C –; t/

�
;

by direct calculation, we have the next result.

Lemma 3.4.2. The following estimate holds,

R.t; –/ � K–2; K > 0: (3.55)

In view of (3.53), (3.55), and the fact that G.t C–; t/ D I C–A.t/Co2.–/, we arrive
at the desired result below.

Lemma 3.4.3. With p.t C –/ selected as in (3.53), relations (3.52)–(3.55) reflect
equalities

¡.l.t C –/jE.x?.t C –/; XŒt C –�// D (3.56)

D ¡.l.t C –/jZŒt C –�/ C o3.–/ D ¡.l.t C –/jZ.t C –// C o4.–/:

Lemma 3.4.3 implies

XŒt C –� D .1 C p�1.t C –//.I C –A.t//XŒt �.I C –A.t//0C (3.57)

C–2.1 C p.t C –//.I C –A.t//0QB.t/.I C –A.t// C o5.–/:



106 3 Ellipsoidal Techniques: Reachability and Control Synthesis

Substituting p.t C –/ of (3.53) into (3.57), denoting –p.t C –/ D ��1.t C –/, and
expanding XŒt C –�; G.t C –; s/; �.t C –/ in –, one arrives at

XŒt C –� D XŒt� C –A.t/XŒt � C –XŒt �A0.t/ C �.t/XŒt � C ��1.t/QB.t/ C o6.–/:

(3.58)

This further gives, by rewriting the last expression, dividing it by –, and passing to
the limit with – ! 0,

PX D A.t/X C XA0.t/ C �.t/X C ��1.t/QB.t/; (3.59)

where

�.t/ D < l.t/; QB.t/l.t/ >1=2

< l.t/; XŒt �l.t/ >1=2
: (3.60)

Starting the construction of EŒt� with EŒt0� D E0, we have thus constructed
the ellipsoid EŒt� as a solution to (3.49) with its evolution selected by the
requirement (3.51), (3.54), (3.56), which resulted in Eqs. (3.59), (3.60), XŒt0� D X0.

Equation (3.59) obviously coincides with (3.35) if ¥ D 0. However, as indicated
in Sects. 3.3, 3.4, the ellipsoid EŒt� constructed from Eq. (3.35), ¥ D 0; which then
turns into (3.31), touches the reach set X Œt � at points generated by support vector
l.t/ D l�.t/ if and only if the latter is of the type l�.t/ D G0.t0; t/l (for any
preassigned l 2 Rn). Then it even satisfies for all t � t0 the requirement (iii)
of Definition 3.4.1. On the other hand, as we have just shown, an ellipsoidal tube
EŒt� D E.x?.t/; XŒt �/ evolves due to funnel equation (3.49) under Definition 3.4.1,
only if it satisfies Eqs. (3.59), (3.60). Therefore, an ellipsoid EŒt� which satisfies
Definition 3.4.1 may touch the exact reach tube only if it follows a good curve l.t/.

The above observations lead to the next result.

Theorem 3.4.1. An ellipsoid EŒt� D E.x?.t/; XŒt �/ is a minimal solution
to the ellipsoidal funnel equation (3.49) only if it is constructed following
Eqs. (3.31), (3.59), (3.60), with XŒt0� D X0, where curve l.t/ D G0.t0; t/l for
some l 2 Rn (it is a good curve).

Note that the opposite of the last Theorem is also true.

Theorem 3.4.2. In order that E.x?Œt �; X�CŒt �/ would be described by Eqs. (3.31),
(3.59), (3.60) it is necessary and sufficient that l.t/ satisfy Eq. (3.45) with some k.t/.
The ellipsoid E.x?Œt �; X�CŒt �/ will be tight in EC.

The solutions given in this theorem are thus tight in the sense that there exists no
other ellipsoid in EC which could be squeezed in between E.x?.t/; X�CŒt �/ and
X Œt �.

From Theorems 3.4.1, 3.4.2 and Lemma 3.4.1 it follows that the mapping
EŒt� D E.t jt0; X0/ constructed as in Theorem 3.4.1, with XŒt� D X�CŒt �, satisfies
the semigroup property (3.50). This may be also checked by direct calculation,
using (3.26)–(3.28).



3.5 The Ellipsoidal Maximum Principle and the Reachability Tube 107

Remark 3.4.2. The ellipsoid EŒt� of 3.4.1 solves Problem 3.2.1 for any (non-
normalized) curve l.t/. In order to have a solution for a normalized curve with
< l.t/; l.t/ >D 1; one has to follow Lemmas 3.3.1, 3.3.2.

In the general case an ellipsoidal tube E�CŒt � D E.x?; X�CŒt �/ may be such that
it touches X Œt � along some curve according to the requirement of Problem 3.2.1.
But this curve may not be a good one. Then equations for X�CŒt � will differ
from (3.31), (3.59), but will coincide with (3.35), where ¥ 6D 0. And E�CŒt � need
not satisfy the semigroup property. An example of such case is when the touching
curve is “drawn” on the surface of exact reach tube by an external minimum-volume
ellipsoid. This touching curve is not a good one. The failure to distinguish good
curves from any curves led to confusion and controversial statements in some
publications in the 1980s on minimum-volume external ellipsoidal approximations.

But what if Eqs. (3.31), (3.59) are still used to approximate the exact reach set
from above, disregarding the effect of being tight? Then the ellipsoid ECŒt � under
consideration will be a conservative upper estimate for the exact reach set so that
X Œt � 	 ECŒt �, with no promise of being tight.

3.5 The Ellipsoidal Maximum Principle
and the Reachability Tube

We may now summarize the earlier results emphasizing that they were directed
at the calculation of reachability tubes rather than fixed-time reach sets. Theo-
rems 3.4.1, 3.4.2, lead to the next proposition.

Theorem 3.5.1. The solution of Problem 3.2.1 allows the following conclusions:

(i) the ellipsoid E�CŒt � D E�.x?.t/; X�C.t// constructed from Eqs. (3.24), (3.25)
for any given l�.t/ D l.t/; X�C.t0/ D X0; is a solution to Problem 3.2.1 and
X�C.t/ satisfies the “general” equation (3.35) with parameters ��.t/ defined
in (3.34).

(ii) The ellipsoid EŒt� D E.x?.t/; X�C.t// constructed from Eqs. (3.31), (3.30)
(or (3.59), (3.60), which are the same) is an upper bound for the solution
E�CŒt � D E�.x?.t/; X�C.t// of (3.24), (3.25), so that for any given function
l�.t/ we have

¡.l.t/jE.x?.t/; X�C.t/// � ¡.l�.t/jE�.x?.t/; X�C.t///; (3.61)

with equality reached for all t � t0 provided l�.t/ is chosen according to
Assumption 3.3.1. In the last case the external ellipsoids are tight.

(iii) In order that E.x?.t/; X�C.t// be described by Eqs. (3.31), (3.30), it is
necessary and sufficient that l.t/ satisfy Eq. (3.45) with some function k.t/.
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Remark 3.5.1. If in the previous theorem l�.t/ is chosen with k.t/ � 0, and X�C.t/

is its related matrix with ��.t/ being its related parameterizing function, then we
further drop the asterisks, assuming l�.t/ D l.t/; X�C.t/ D XC.t/; ��.t/ D �.t/

and are using Eqs. (3.31), (3.30) (or (3.59), (3.60)). For vector x?.t/ of the center of
ellipsoid E.x?.t/; X�C.t// the asterisk remains since it does not depend on l:

The solutions to the problem of the last theorem are tight in the sense of
Definitions 3.2.1, 3.2.4. It is also useful to note the following.

Lemma 3.5.1. Each ellipsoidal tube of type E.t jt0; E0/ D EŒt�, generated as a
solution to Eqs. (3.31), (3.30), defines a map with the semigroup property

E.t jt0; E0/ D E.t jE.£; jt0; E0//; t0 � £ � t: (3.62)

We now indicate how to calculate the reach tube with the results above.
An application of Theorem 3.1.1 under Assumption 3.3.1 yields the following

conclusion.

Theorem 3.5.2. Suppose Assumption 3.3.1 is fulfilled. Then the points xl�

.t/ of
support for vector l D l�.t/, namely, those for which the equalities

< l�.t/; xl�

.t/ >D ¡.l�.t/jX Œt �/ D ¡.l�.t/jE.x?.t/; XCŒt �// (3.63)

are true for all t � t0, are reached from initial state xl.t0/ D xl0 using a system
trajectory with control u D u�.t/ which satisfies the maximum principle (3.15) and
condition (3.16) which now have the form l�.t/ D G0.t0; t/l

< l; G.t0; s/B.s/u�.s/ >D maxf< l; G.t0; s/B.s/u > ju 2 E.q.t/; Q.t//g;
(3.64)

and

< l; xl0 >D maxf< l; x > jx 2 E.x0; X0/g; (3.65)

for any t � t0. For all s � t0 the control u�.s/; s 2 Œt0; t � may be taken to be the
same, whatever be the value t .

From the maximum principle (Theorem 3.1.1) one may directly calculate the
optimal control u�.s/ which is

u�.s/ D Q.s/B 0.s/G0.t0; s/l

< l; G.t0; s/B.s/Q.s/B 0.s/G0.t0; s/l >1=2
; t0 � s � t; (3.66)

and the optimal trajectory

xl.t/ D x?.t/ C
Z t

t0

G.t; s/B.s/Q.s/B 0.s/G0.t0; s/l

< l; G.t0; s/B.s/Q.s/B 0.s/G0.t0; s/l >1=2
ds; t � t0;

(3.67)
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where

xl.t0/ D xl0 D X0l

< l; X0l >1=2
C x0 D x?.t0/: (3.68)

These relations are not very convenient for calculation, being expressed in a non-
recurrent form.

However, one should note that due to (3.38), (3.39), the trajectory xl .t/ of
Theorem 3.5.2 also satisfies the following “ellipsoidal” maximum principle.

Theorem 3.5.3. The next condition holds

< l�.t/; xl .t/ >D maxf< l�.t/; x > jx 2 E.x?.t/; XCŒt �/g; (3.69)

and is attained at

xl .t/ D x?.t/ C XCŒt �l�.t/ < l�.t/; XCŒt �l�.t/ >�1=2; (3.70)

where l�.t/ D G0.t0; t/l ,

XCŒt0� D X0; xl .t0/ D x0 C X0l < l; X0l >�1=2; (3.71)

and XCŒt � may be calculated through Eq. (3.31) with explicitly known parame-
ter (3.30).

Thus the “trick” is to substitute at each point of the boundary of the reach set
X Œt � the “original” maximum principle (3.15) of Theorem 3.1.1 by the “ellipsoidal”
maximum principle (3.69).

The maximum principles

This results in the next proposition.
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Theorem 3.5.4. The trajectory xl .t/ that runs along the boundary @X Œt � of the
reach set X Œt � and touches X Œt � at the points of support for the vector l�.t/ D
G0.t; t0/l is given by equalities (3.71), (3.70), where XCŒt � is the solution to
Eqs. (3.31), (3.30) (or, what is the same, to Eqs. (3.59), (3.60)).

Due to Lemma 3.3.1 the last theorem may be complemented by

Corollary 3.5.1. Given vector l0 D l�.t/, the related ellipsoid E.x?.t/; XCŒt �/

and vector xl.t/ 2 @X Œt �; generated by function l�.t/ of Eq. (3.45), do not depend
on the choice of function k.t/ in this equation.

Denoting xl .t/ D xŒt; l �, we thus come to a two-parametric surface xŒt; l � that
defines the boundary @X Œ�� of the reachability tube X Œ�� D [f@XŒt �; t � t0g. With
t D t 0 fixed and l 2 S D fl W< l; l >D 1g varying, the vector xŒt 0; l � runs along the
boundary @X Œt 0�. On the other hand, with l D l 0 fixed and with t varying, the vector
xŒt; l 0� moves along one of the system trajectories xl .t/ that touch the reachability
set X Œt � of system (3.1) with control u�.t/ of (3.66) and xl0 of (3.68). Then

[fxŒt; l �jl 2 Sg D @X Œt �; [fxŒt; l �jl 2 S; t � t0g D @X :

Remark 3.5.2. Relation (3.70) is given in a recurrent form and throughout the
calculation of curves xl Œt � and surface xŒt; l � one need not compute the respective
controls u�.t/.

Remark 3.5.3. This remark concerns the question of optimality of external ellip-
soids. Suppose for each time t a globally volume-optimal ellipsoid E.x?.t/; Xv.t//

is constructed. It will obviously touch the reach set X Œt � at each instant t and thus
produce a certain curve xv.t/ on the surface @X Œt � of the reach tube X Œ��. However,
an example given in [174, Sect. 2.7, Example 2.7.1] indicates that the volume-
optimal ellipsoid may not exist in the class EC. The conclusion which follows is
that in general the volume-optimal curve xv.t/ is not a “good one” in the sense
of Assumption 3.3.1. Therefore, one should not expect that matrix Xv.t/ of the
volume-optimal ellipsoid to be described by Eq. (3.31) ((3.59)), as claimed by some
authors.

On the other hand, the tight ellipsoids of Sect. 3.2 do satisfy Definition 3.2.1.
This implies

dŒl� D ¡.l jX Œt �/ C ¡.�l jX Œt �/ D ¡.l jE.x?.t/; XCl .t/// C ¡.�l jE.x?.t/; XCl .t// D

D 2 < l; XCl .t/l >1=2

where dŒl� is the length of the exact projection of set X Œt � on the direction l . Here
matrix XCl .t / is calculated due to (3.31), (3.30), for the given vector l 2 Rn.
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3.6 Example 3.6

For an illustration of the results consider system

Px1 D x2; Px2 D u; (3.72)

x1.0/ D x0
1; x2.0/ D x0

2 I juj � �; � > 0:

Here we have:

x1.t/ D x0
1 C x0

2t C
Z t

0

.t � £/u.£/d£;

x2.t/ D x0
2 C

Z t

0

u.£/d£:

The support function

¡.l jX Œt �/ D maxf< l; x.t/ > j juj � �g
may be calculated directly and is given by formula

¡.l jX Œt �/ D l1x0
1 C .l1t C l2/x0

2 C �

Z t

0

jl1.t � £/ C l2jd£:

The boundary of the reach set X Œt � may be calculated from the formula ([174])

min
l

f¡.l jX Œt �/ � l1x1 � l2x2j < l; l >D 1g D 0: (3.73)

Then the direct calculation of the minimum gives a parametric representation for
the boundary @X Œt � by introducing parameter ¢ D l0

2 = l0
1 , where l0

1 ; l0
2 are the

minimizers in (3.73). This gives two curves

x1.t/ D x0
1 C x0

2t C �.t2=2 � ¢2/; (3.74)

x2.t/ D x0
2 C 2�¢ C �t;

and

x1.t/ D x0
1 C x0

2t � �.t2=2 � ¢2/; (3.75)

x2.t/ D x0
2 � 2�¢ � �t:

for ¢ 2 Œ�t; 0�:4

4Note that for l0
2 =l0

1 > 0 or l0
2 =l0

1 < �t we have ¢ 62 Œ�t; 0�. For such vectors the point of support
xl Œt � will be at either of the vertices of set X Œt �.
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Fig. 3.1 The reach set at
given time

These curves (parameterized by ¢) form the upper and lower boundaries of X Œt �

with parameter t fixed (see Fig. 3.1). With t increasing this allows to draw the
reachability tube X Œt � as a set-valued function of time t , see Fig. 3.2.

The formula l.t/ D e�A0t l of Assumption 3.3.1 here transforms into .l1.t/ D
l1I l2.t/ D l2 � t l1/. This allows to write down the relations for the points of support
to the hyperplanes generated by vector l.t/. A substitution into (3.74), (3.75), gives
for l0

2 = l0
1 2 Œ0; t �

xl
1.t/ D x0

1 C x0
2t C �.t2=2 � .t l0

1 � l0
2 /=l0

1 /2/; (3.76)

xl
2.t/ D x0

2 C 2�.l0
2 � t l0

1 /=l0
1 C �t;

and

xl
1.t/ D x0

1 C x0
2t � �.t2=2 � ..t l0

1 � l0
2 /=l0

1 /2/; (3.77)

xl
2.t/ D x0

2 � 2�.l0
2 � t l0

1 /=l0
1 � �t:

With vector l 2 R2 fixed, this gives a parametric family of curves xl .t/ that cover
the surface of the reach tube X Œ�� and are the points of support for the hyperplanes
generated by vectors l 2 R2 through formula l.t/ D .l1; �t l1 C l2/. These curves
are shown in thick lines in Fig. 3.2.
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Fig. 3.2 The reach tube

Let us now choose two pairs of vectors l 2 R2, for example

l� D .�10; �4/; l� D .10; 4/I l�� D .�4; 0/; l�� D .4; 0/:

Each of these pairs generates a tight ellipsoid E�Œt � and E��Œt � due to Eq. (3.71),
where the elements x�

i;j of X�C satisfy the equations

Px�
11 D x�

12 C x�
21 C �.t/x�

11; Px�
12 D x�

22 C �x�
12;

Px�
21 D x�

22 C �.t/x�
21; Px�

22 D �.t/x�
22 C .�.t//�1�2;

with X�C.0/ D 0 and

�.t/ D f1.t/=f2.t/;

with

f1.t/ D �jl2 � t l1jI f2.t/ D .x�
11l2

1 C 2x�
12l1.l2 � t l1/ C x�

22.l2 � t l1/2/1=2:

Ellipsoid E��Œt � is expressed similarly.
Here E�Œt � touches the reach set X Œt � at points x�

l .t / generated by vector l�
through formulas (3.75), (3.77) and E��Œt � touches it at points x��

l .t / generated by
vector l�� through formulas (3.74), (3.76) (see cross-section in Fig. 3.3 for t D 0:5).
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Fig. 3.3 Two tight ellipsoids

For a given time t the intersection

E�Œt � \ E��Œt � � X Œt �

gives an approximation of X Œt � better than the four supporting hyperplanes that
could be placed at the same points of support as for the ellipsoids (see Fig. 3.3).
At the same time, by taking more ellipsoids for other values of l we achieve,
as a consequence of Theorem 3.2.1, a more accurate approximation of set X Œt �

(see Fig. 3.4 for seven ellipsoids) with exact representation achievable if number
of appropriately selected ellipsoids tends to infinity.

Having introduced a family of external ellipsoidal approximations for reach sets
and specified its basic properties, we now indicate that similar properties are also
true for internal approximations which are often required whenever one has to deal
with guaranteed performance. This is a more difficult problem, though, as compared
with external approximations.

3.7 Reachability Sets: Internal Approximations

Existing approaches to the calculation of internal ellipsoidal approximations for the
sum of a pair of ellipsoids are given in [174, Sect. 2.3, pp. 121–127]. However,
the important question for dealing with dynamics is how to effectively compute
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Fig. 3.4 Many tight ellipsoids

an internal approximation of the sum of any finite number of ellipsoids and going
further of an integral of ellipsoidal-valued functions. It is also important, as in the
external case, to single out families of tight internal approximations of reach tubes
or their neighborhoods through such ellipsoidal-valued functions that would touch
their boundary from inside at any point on their surface. Both of the questions are
answered in the forthcoming sections.

Thus, given as before is system (3.1) or differential inclusion (3.3), with
A.t/ � 0. The problem is to approximate the respective reach sets and tubes
internally, through appropriate tight ellipsoidal sets and ellipsoidal-valued tubes.

The text of this section relies on the next constructions introduced earlier in
[177, 182]. Though described there for nondegenerate ellipsoids, they are true for
degenerate ellipsoids as well.

Consider the internal approximation of sum

E.x0; X0/ C
Z t

t0

E.B.s/q.s/; B.s/Q.s/B 0.s//ds;

of an n-dimensional ellipsoid E.x0; X0/ and a set-valued integral of an ellipsoidal-
valued function E.B.s/q.s/; B.s/Q.s/B 0.s// D E.qB.s/; QB.s// with continuous
n � p-matrix function B.s/ > 0. (Recall notations qB.t/ D B.t/q.t/; QB.t/ D
B.t/Q.t/B 0.t/.)

Theorem 3.7.1. (i) The following inclusion is true

E.x0; X�.t// 	 x.t/ C E.0; X0/ C
Z t

t0

E.0; QB.£//d£;

x.t/ D x0 C
Z t

t0

qB.s/ds;
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whatever be the matrix

X�.t/ D (3.78)

D
�

S0X
1=2
0 C

Z t

t0

S.£/Q
1=2
B .£/d£

�0�
S0X

1=2
0 C

Z t

t0

S.£/Q
1=2
B .£/d£

�
:

Here X0 D .X0/0 > 0 is an n � n matrix, Q.£/ D Q0.£/; £ 2 Œt0; t � are
any positive definite, p � p matrices with continuous function Q.£/, matrices
S0S 0

0 D I; S 0.£/S.£/ � I are orthogonal n � n matrices and S.£/ are
continuous in time.

(ii) For a given vector l 2 Rn relation

< l; x.t/ > C¡.l jE.0; X�.t/// �

� ¡.l jE.0; X0// C
Z t

t0

¡.l jE.0; QB.£//d£; l 2 Rn; (3.79)

turns into an equality iff matrices S0; S.£/ may be chosen such that for some
scalar function œ.£/ > 0 the equality

S.£/Q
1=2
B .£/l D œ.£/S0X

1=2
0 l (3.80)

would be fulfilled for all £ 2 Œt0; t �.

Remark 3.7.1. Note that with m < n matrices QB.t/ D B.t/Q.t/B 0.t/ turn out
to be degenerate, of rank � m: Then the square root Q

1=2
B is understood to be an

n � n matrix which may be calculated through the “square root” version of the
singular value matrix decomposition of QB which gives Q

1=2
B Q

1=2
B D QB (see

[245, pp. 80–83]).

We now pass to the definition of internally tight ellipsoids.

Definition 3.7.1. An internal approximation E� of a reach set X Œt � is tight if there
exists a vector l 2 Rn such that

¡.˙l jE�/ D ¡.˙l jX Œt �/:

This definition may be appropriate for the reach sets of the present paper, but the
respective ellipsoids may not be unique. A more general definition follows.

Definition 3.7.2. An internal approximation E� is tight in the class E�, if for any
ellipsoid E 2 E�, X Œt � 
 E 
 E� implies E D E�.

This section is concerned with internal approximations, where class E� D fE�g
is described within the following definition.
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Definition 3.7.3. The class E� D fE�g consists of ellipsoids that are of the form
E�Œt � D E.x?.t/; X�.t//, where x?.t/ satisfies the equation

Px? D B.t/q.t/; x?.t0/ D x0; t � t0;

X�.t/ is of the form (3.78), q.t/ 2 Rp is any Lebesgue-measurable function.

In particular, this means that if an ellipsoid E.x; X/ 	 X Œt � is tight in E�, then
there exists no other ellipsoid of type E.x; kX/; k > 1; that satisfies the inclusions
X Œt � 
 E.x; kX/ 
 E.x; X/ (ellipsoid E.x; X/ touches set X Œt �).

Definition 3.7.4. The internal ellipsoids are said to be tight if they are tight in E�.

We actually further deal only with ellipsoids E� 2 E�. For the problems of this
book Definition 3.7.1 follows from 3.7.4.

The class E� is rich enough to arrange effective approximation schemes, though
it does not include all possible ellipsoids. A justification for using this class is due
to the propositions of Theorem 3.7.3 which also gives conditions for the internal
ellipsoids E.0; X�.£// to be tight in the previous sense.

Let us now return to equation

Px D A.t/x C B.t/u; t0 � t � t1; (3.81)

of Sect. 3.1.
Then the problem consists in finding the internal ellipsoid E.x?.t/; X�.t// for

the reach set

X Œt � D G.t; t0/E.x0; X0/ C
Z t

t0

G.t; £/B.£/E.q.£/; Q.£//d£:

Since for a matrix-valued map we have BE.q; Q/ D E.qB; QB/, the formula of
Theorem 3.7.1 given there for X�.t/ will now transform into

X�.t/ D G.t; t0/

�
X

1=2
0 S 0

0.t0/ C
Z t

t0

G.t0; £/Q
1=2
B .£/S 0.£/d£

�
�

�
�

S0.t0/X
1=2
0 C

Z t

t0

S.£/Q
1=2
B .£/G0.t0; £/

�
G0.t; t0/; (3.82)

and

x?.t/ D G.t; t0/x0 C
Z t

t0

G.t; £/qB.£/d£: (3.83)

Theorem 3.7.1 now transforms into the following statement.
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Theorem 3.7.2. The internal ellipsoids for the reach set X Œt � satisfy the inclusion

E.x?.t/; X�.t// 	 E.G.t; t0/x0; G.t; t0/X0G0.t; t0//C (3.84)

C
Z t

t0

E.G.t; £/qB.£/; G.t; £/QB.£/G0.t; £//d£ D X Œt �;

where X�.t/; x?.t/ are given by (3.82), (3.83), with S0; S.£/ being any orthogonal
matrices and S.£/ continuous in time.

The tightness conditions now transfer into the next proposition.

Theorem 3.7.3. For a given instant t the internal ellipsoid E.x?.t/; X�.t// will
be tight and will touch X Œt � at the point of support xl of the tangent hyperplane
generated by given vector l�, namely,

¡.l�jX Œt �/ D (3.85)

D< l�; x?.t/ > C < l�; X0l� >1=2 C
Z t

t0

< l�; G.t; £/QB.£/G0.t; £/l� >1=2 d£ D

¡.l�jE.x?.t/; X�.t/// D< l�; x?.t/ > C < l�; X�.t/l� >1=2D< l�; xl >;

iff S0; S.£/ satisfy the relation

S.£/Q
1=2
B .£/G0.t; £/l� D œ.£/S0X

1=2
0 G0.t; t0/l�; t0 � £ � t; (3.86)

for some function œ.£/ > 0:

Direct calculation indicates the following.

Lemma 3.7.1. The function œ.£/ of Theorem 3.7.3 is given by

œ.£/ D< l�; G.t; £/QB.£/G0.t; £/l� >1=2< l�; G.t; t0/X0G0.t; t0/l� >.�1=2/; t0 � £ � t:

(3.87)

The previous Theorems 3.7.2, 3.7.3 were formulated for a fixed instant of time
t and a fixed support vector l�. It is important to realize what would happen if l�
varies in time.

3.8 Example 3.8

Consider system

Px1 D x2; Px2 D u; (3.88)

x1.0/ D x0
1; x2.0/ D x0

2 I juj � �; � > 0:
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Here

x1.t/ D x0
1 C x0

2t C
Z t

0

.t � £/u.£/d£;

x2.t/ D x0
2 C

Z t

0

u.£/d£:

Assume X0 D B–.0/ D fx W< x; x >� –2g. The support function

¡.l jX Œt �/ D maxf< l; x.t/ > j juj � �; x0 2 X0g

of the reach set X Œt � D X .t; 0; X0/ may be calculated directly and is given by

¡.l jX Œt �/ D –.l2
1 C .l1t C l2/2/1=2 C

Z t

0

jl1.t � £/ C l2jd£:

The boundary @X Œt � of the reach set X Œt � is the set of vectors such that

min
l

f¡.l jX Œt �/ � l1x1 � l2x2jhl; li D 1g D 0: (3.89)

This leads to the next parametric presentation of @X Œt � through two bounding curves
(one with sign plus in ˙ and the other with minus)

x1.t/ D x0
1 C x0

2t ˙ �.t2=2 � ¢2/; (3.90)

x2.t/ D x0
2 ˙ 2�¢ ˙ �t;

taken for values of parameter ¢ 2 .�t; 0/.The values ¢ 62 .�t; 0/correspond to two
points—the two vertices of X Œt �.

Here ¢ D l0
2 = l0

1 where l0
1 ; l0

2 are the minimizers in (3.89).
Solving the problem for all t > 0, set l0 D l.t/. Then

x1.t/ D (3.91)

D –.l1.t/.t2 C 1/ C l2.t/t/=.l2
1 .t/ C .l1.t/t C l2.t//2/1=2 ˙ �.t2=2 � l2

2 .t/=l2
1 .t//;

x2.t/ D

D –.l1.t/t C l2.t//=.l1.t/2 C .l1.t/t C l2.t//2/1=2 ˙ 2�l2.t/=l1.t/ ˙ �t;

where l 2 R2; t � 0.
Here, for each t , vector l0 D l.t/ is the support vector to X Œt � at point x.t/ 2

@X Œt �. Moreover, with t fixed, and x D x.l/.t/ running along @X Œt � (which is a
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closed curve in Rn for a given t ), its support vector l0 D l.t/ will sweep out all
directions in Rn. Therefore, considering any function l.t/ of t with t � t0, we may
be sure that there exists a corresponding trajectory x.l/.t/ 2 @X Œt � for t � t0.

Proceeding further, we select l.t/ satisfying Assumption 3.3.1, namely, as l.t/ D
e�A0t l�. This transforms into l1.t/ D l�

1 ; l2.t/ D l�
2 � t l�

1 and (3.91) simplifies to

x1.t/ D (3.92)

D –.l�
1 C t l�

2 /=.l�2
1 C l�2

2 /1=2 ˙ �.t2=2 � .t l�
1 � l�2

2 .t//2=l�2
1 .t//;

x2.t/ D –l�
2 =.l�2

1 C l�2
2 /1=2 ˙ 2�.l�

2 � t l�
1 /=l�

1 ˙ �t:

These relations depend only on the two-dimensional vector l�. They produce a
parametric family of curves fx1.t/; x2.t/g that cover all the surface of the reach tube
X Œt � so that vectors x.t/; x.t/ D fx1.t/; x2.t/g are the points of support for the
hyperplanes generated by vectors l.t/ D .l�

1 ; �t l�
1 C l�

2 /0. The reach tube that starts
at X 0 6D f0g with these curves on its surface is shown in Fig. 3.5.

We now construct the tight internal ellipsoidal approximations for X Œt � that touch
the boundary @X Œt � from inside at points of support taken for a given vector l D l�.

The support function ¡.l� j X Œt �/ for the exact reach set may be rewritten as

¡.l� j X Œt �/ D –hl�; I l�i1=2 C �

Z t

0

hl�; QB.£/l�i1=2d£; (3.93)

Fig. 3.5 Reach tube
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where B 0 D .0; 1/ and

QB.£/ D
�

£2; £

£; 1

�

and Q
1=2
B .£/ D QB.£/.1 C £2/�1=2.

According to (3.102) and in view of Assumption 3.3.1, we have (taking S0 D I ),

X�.£/ D

D
�

–I C
Z t

0

Q
1=2
B .£/S 0.£/d£

��
–I C

Z t

0

S.£/Q
1=2
B .£/d£

�
; (3.94)

where matrix S.£/ must satisfy the conditions

S 0.£/S.£/ D I; S.£/Q
1=2
B .£/l� D –œ.£/l�; £ � 0 (3.95)

for some œ.£/ > 0. Calculations give

–2œ2.£/ D hl�; QB.£/l�ihl�; l�i�1 D .l�
1 £ C l�

2 /2.l�2
1 C l�2

2 /�1: (3.96)

Denote

p.£/ D Q
1=2
B .£/l� D

�
£2l�

1 C £l�
2

£l�
1 C l�

2

�
.1 C £2/�1=2 D rp.£/

�
cos ¥p.£/

sin ¥p.£/

�
;

where

rp.£/ D jl�
1 £ C l�

2 j; ¥p.£/ D ˙ arccos.˙£=.1 C £2/1=2/

and also

l� D hl�; l�i1=2

�
cos ¥l.£/

sin ¥l.£/

�
; ¥l D ˙ arccos.l�

1 =.l�2
1 C l�2

2 /1=2/:

Selecting further the orthogonal matrix-valued function S.£/ as

S.£/ D
�

cos ’.£/; � sin ’.£/

sin ’.£/; cos ’.£/

�
;

we may rewrite the second relation (3.95) as

�
cos.¥p.£/ C ’.£//

sin.¥p.£/ C ’.£//

�
rp.£/ D –œ.£/.l�2

1 C l�2
2 /1=2

�
cos ¥l.£/

sin ¥l.£/

�
; (3.97)
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where £ 2 Œt0; t �. Here ’.£/ has to be selected from equality

¥p.£/ C ’.£/ D ¥l.£/; £ 2 Œt0; t �; (3.98)

and œ.£/ is given by (3.96).
Equations (3.97), (3.98) need no recalculation for new values of t .
Thus we have found an orthogonal matrix function S.£/

S.£/ D
�

cos.¥l .£/ � ¥p.£//; � sin.¥l .£/ � ¥p.£//

sin.¥l .£/ � ¥p.£//; cos.¥l .£/ � ¥p.£//

�
; (3.99)

that depends on l�, that is continuous in £ and satisfies (3.97).
Matrix X�.t/ may now be calculated from equations

PX� D . PX��.t//0X��.t/ C X�0

� .t/ PX��.t/; X�.0/ D –2I; (3.100)

where

PX�� D S.t/Q
1=2
B .t/; X��.0/ D –I:

The internal ellipsoids for the reach set X Œt � D X .t; 0; X 0/ are shown in Figs. 3.6,
3.7, and 3.8 for X 0 D E.0; –I /; with epsilon increasing from – D 0 (Fig. 3.6) to
– D 0:175 (Fig. 3.7), and – D 1 (Fig. 3.8). The tube in Fig. 3.5 corresponds to the
epsilon of Fig. 3.7. One may also observe that the exact reach sets X .t; 0; f0g/ taken
for – D 0 are located within the sets X .t; 0; X 0/ D X Œt �, calculated for – 6D 0 (see
Figs. 3.7 and 3.8).

3.9 Reachability Tubes: Recurrent Relations—Internal
Approximations

We start with a question similar to Problem 3.2.1, but now formulated for internal
approximations.

Problem 3.9.1. Given a vector function l�.t/, continuously differentiable in t , find
an internal ellipsoid E.x�.t/; X�.t// 	 X Œt � that would ensure for all t � t0; the
equality

¡.l�.t/jX Œt �/ D ¡.l�.t/jE.x�.t/; X�.t/// D hl�.t/; xl .t/i; (3.101)

so that the supporting hyperplane for X Œt � generated by l�.t/, namely, the plane
hx � xl .t/; l�.t/i D 0 that touches X Œt � at point xl.t/, would also be a supporting
hyperplane for E.x�.t/; X�.t// and touch it at the same point.
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Fig. 3.6 Internal ellipsoids
for X 0 D E.0; 0/
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This problem is solvable in the class E�. In order to solve this problem, we
shall refer to Theorems 3.7.2, 3.7.3. However, functions S.£/; œ.£/ used for the
parametrization in (3.82), (3.86) should now be functions of two variables, namely,
of £, t , since the requirement is that relation (3.101) should now hold for all
t � t0 (and therefore S0 should also depend on t ). We may therefore still apply
Theorems 3.7.2, 3.7.3 but now with S0; S.£/; œ.£/ substituted by S0t ; St .£/; œt .£/.

Theorem 3.9.1. With l D l�.t/ given, the solution to Problem 3.9.1 is an ellipsoid
E.x�.t/; X�.t//; where x�.t/ D x?.t/ and

X�.t/ D (3.102)

D G.t; t0/

�
X

1=2
0 S 0

0t .t0/ C
Z t

t0

G.t0; £/Q
1=2
B .£/S 0

t .£/d£

�
�

�
�

S0t .t0/X
1=2
0 C

Z t

t0

St .£/Q
1=2
B .£/G0.t0; £/

�
G0.t; t0/;
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Fig. 3.7 Internal ellipsoids
for X 0 D E.0; 0/;

E.0; 0:175/
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with S0t ; St .£/ satisfying relations

St .£/P
1=2
B .£/G0.t; £/l�.t/ D œt .£/S0t X

1=2
0 G0.t; t0/l�.t/; (3.103)

and S 0
0t S0t D I; S 0

t .£/St .£/ � I for all t � t0; £ 2 Œt0; t �, where

œt .£/ D (3.104)

D< l�.t/; G.t; £/QB.£/G0.t; £/l�.t/ >1=2< l�.t/; G.t; t0/X0G0.t; t0/l�.t/ >.�1=2/ :

The proof follows by direct substitution. The last relations are given in a “static”
form and Theorem 3.9.1 indicates that the calculation of parameters S0t ; St .£/; œt .£/

has to be done “afresh” for every new instant of time t . We shall now investigate
whether the calculations can be made in a recurrent form, without having to perform
the additional recalculation.

In all the ellipsoidal approximations considered in this book the center of the
approximating ellipsoid is always the same, being given by x?.t/ of (3.83). The
discussions shall therefore concern only the relations for X�.t/.
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Fig. 3.8 Internal ellipsoids
for X 0 D E.0; 0/; E.0; 1/
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Remark 3.9.1. Without conditions (3.103), (3.104) equality (3.101) turns into an
inequality

¡.l�.t/jX Œt �/ � ¡.l�.t/jE.x�.t/; X�.t/// D hl�.t/; xl .t/i; (3.105)

for any orthogonal matrix-valued function S.t/:

Remark 3.9.2. The results of Sects. 3.7 and 3.9 are also true for degenerate ellip-
soids E.x0; X0/; E.q.t/; Q.t//. This will further allow to treat systems with
box-valued constraints in the form of parallelotopes as well as to treat zonotope-
valued constraints (see Chap. 5, Sects. 5.4, 5.5).

We will now pass to the treatment of internal approximations of reachability
tubes. We start with a particular function l�.t/, namely, the one that satisfies the
Assumption 3.3.1, where the requirement is that l�.t/ is of the form l�.t/ D
G0.t0; t/l .

Substituting l�.t/ in (3.103), (3.104), we observe that the relations for calculating
St .£/; œt .£/ transform into

St .£/Q
1=2
B .£/G0.t0; £/l D œt .£/S0t X

1=2
0 l; (3.106)

S 0
0t S0t D I; S 0

t .£/St .£/ � I;
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and

œt .£/ D< l; G.t0; £/QB.£/G0.t0; £/l >1=2< l; X0l >�1=2 : (3.107)

Here the known vectors and functions used for calculating S0t ; St .£/; œt .£/ do
not depend on t . But then the matrix S0t and functions St .£/; œt .£/ do not depend
on t either, no matter what is the interval Œt0; t �. Therefore, the lower indices t in
S0t ; St ; œt may be dropped and the matrix X�.t/ D X.l/� will depend only on l .
Then we have

X.l/� .t/ D G.t; t0/K .t/G0.t; t0/;

where

K .t/ D K 0.t/K.t/; PK D PK 0K C K 0 PK;

and

K.t/ D S0X
1=2
0 C

Z t

t0

S.£/Q
1=2
B .£/G0.t0; £/d£: (3.108)

Differentiating X.l/� .t/ in view of the last notations, we come to

PX.l/� D A.t/X.l/� C X.l/� A0.t/ C G.t; t0/. PK 0.t/K.t/ C K.t/ PK 0.t//G0.t; t0/;

(3.109)
where

PK D H.t/G0.t0; t/; H.t/ D S.t/Q
1=2
B .t/; K.t0/ D S0X

1=2
0 : (3.110)

The differentiation of (3.83) also gives

Px? D A.t/x? C B.t/q.t/; x?.t0/ D x0: (3.111)

This leads to the following theorem.

Theorem 3.9.2. Under Assumption 3.3.1 the solution to Problem 3.9.1 is given by
ellipsoid E.x?.t/; X.l/� .t// where X.l/� .t/; x?.t/ are given by Eqs. (3.109), (3.111),
and functions S.t/, œ.t/ involved in the calculation of K.t/ satisfy together with
S0 the relations (3.106), (3.107), where the lower indices t in S0t ; St ; œt are to be
dropped.

We may also denote X��.t/ D K.t/G0.t; t0/, so that X.l/.t/ D .X��.t//0X��.t/:

Lemma 3.9.1. Function X�
. t / may be expressed through equation

PX�� D X��A0.t/ C H.t/; X��.t0/ D S0X
1=2
0 : (3.112)

This yields the next result.
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Lemma 3.9.2. The ellipsoid E.x?.t/; X.l/� .t// of Theorem 3.9.2, given by
Eqs. (3.109)–(3.112) depends on the selection of orthogonal matrix function S.t/

with orthogonal S0; and for any such S0; S.t/ the inclusion

E.x?.t/; X.l/� .t// 	 X Œt �; t � t0;

is true with equality (3.105) attained for X�.t/ D X.l/� .t/ and x�.t/ D x?.t/ under
conditions (3.106), (3.107).

Let us now suppose that l.t/ of Problem 3.9.1 is the vector function that generates
any continuous curve of related support vectors on the surface of X Œt �. Namely,
Assumption 3.3.1 is not fulfilled. Then one has to use formula (3.102), having in
mind that S0t ; St .£/ depend on t . After a differentiation of (3.102) in t , one may
observe that (3.110) transforms into

PX� D A.t/X� C X�A0.t/ C H 0.t/X��.t/ C X��.t/H.t/ C ‰.t; �/; (3.113)

X�.t0/ D X0;

where

‰.t; �/ D ‰�.t; �/ C ‰�0

.t; �/

and

‰�.t; �/ D G.t; t0/

�
X

1=2
0 .@S 0

0t .t0/=@t/ C
Z t

t0

G.t0; £/Q
1=2
B .£/.@S 0

t .£/=@t/d£

�
�

�
S0t .t0/X

1=2
0 C

Z t

t0

St .£/Q
1=2
B .£/G0.t0; £/d£/

�
G0.t; t0/:

Lemma 3.9.3. Under Assumption 3.3.1 the functional ‰.t; �/ � 0.

Similarly to Sects. 3.3 and 3.4, we come to the proposition.

Theorem 3.9.3. Let l.t/ generate a curve xl .t/ of related support points located on
the surface of set X Œt �, forming a system trajectory for (3.81) due to some control
u.t/. Then Assumption 3.3.1 is satisfied and the functional ‰.t; �/ � 0 iff l.t/ is a
“good” curve.

We would finally like to emphasize that the suggested approach appears to be
appropriate for parallel computations (see Chap. 4, Sect. 4.5).
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3.10 Backward Reachability: Ellipsoidal Approximations

The backward reachability or “solvability” sets W Œ£� D W Œ£; t1; M � were
introduced earlier in Sect. 2.3. As indicated in this section, their calculation is
crucial for constructing strategies of feedback target control. We shall now indicate
the ellipsoidal techniques that allow effective calculation of feedback control
strategies for such problems. The suggested methods apply to systems of fairly high
dimensions.

Ellipsoidal approximations of solvability sets are derived through procedures
similar to forward reach sets. Here are the respective results. A detailed derivation
of the coming relations may serve to be one of the good exercises on the topics of
this book.

Keeping notation QB.£/ D B.£/Q.£/B 0.£/, we have the next assertion.

Theorem 3.10.1. Given is system (3.1) with ellipsoidal bounds u.t/ 2
E.q.t/; Q.t// and target set E.m; M/. Then the following results are true.

(i) With E.w?.£/; W
.l/

C .£// and E.w?.£/; W .l/� .£// being the external and internal
ellipsoidal approximations of set W Œ£� the next inclusions are true

E.w?.£/; W .l/� .£// 	 W Œ£� 	 E.w?.£/; W
.l/

C .£//: (3.114)

(ii) Vector w?.t/ satisfies equation

Pw? D A.t/w? C B.t/q.t/; w?.t1/ D m; (3.115)

while matrix W
.l/

C .t/ satisfies equation

PW .l/
C D A.t/W

.l/
C C W

.l/
C A0.t/ � �.t/W

.l/
C � ��1.t/QB.t/; (3.116)

where

�.t/ D< l.t/; QB.t/l.t/ >1=2< l.t/; W
.l/

C .t/l.t/ >�1=2; W
.l/

C .t1/ D M;

(3.117)
with l.t/ D G0.t1; t/l; l 2 Rn:

(iii) For each vector l 2 Rn the next equality is true

¡.l jE.w?.t/; W
.l/

C .t/// D ¡.l jW Œt �/; (3.118)

(ellipsoid E.w.t/; W
.l/

C .t// is tight).
(iv) For any vector l an internal ellipsoid E.w?.£/; W .l/� .£// 	 W Œ£� is defined

through matrix
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W .l/� .t/ D

D G.t; t1/

�
M 1=2S 0

m �
Z t1

t

G.t1; t/QB.£/1=2S 0.£/d£

�

�
SmM 1=2 �

Z t1

t

S.£/QB.£/1=2G0.t1; £/d£

�
G0.t; t1/;

which satisfies equation

PW .l/� D (3.119)

D A.t/W .l/� C W .l/� A0.t/ C G.t; t1/ PH .l/.t/G0.t; t1/; W .l/� .t1/ D M;

with

H .l/.t/ D H 0.t/H.t/; PH .l/ D PH 0H C H 0 PH;

H.t/ D SmM 1=2 �
Z t1

t

S.£/QB.£/1=2G0.t1; £/d£; (3.120)

and

PH D S.t/Q
1=2
B .t/G0.t1; t/; H.t1/ D SmM 1=2;

where Sm is any orthogonal matrix and S.t/ is any orthogonal matrix-valued
function.

(v) Suppose orthogonal matrices Sm D S
.l/
m ; S.t/ D S.l/.t/ satisfy conditions

.S.l/
m /0S.l/

m D I; .S.l/.t//0S.l/.t/ � I;

S.l/.t/QB.t/1=2G0.t1; t/l < l; G.t1; t/QB.t/1=2G0.t1; t/l >�1=2D

D S.l/
m M 1=2l < l; Ml >�1=2;

for all t 2 Œ£; t1� and therefore depend on l .
Then for each vector l 2 Rn the equality condition for support functions is

true:

¡.l jE.w?.t/; W .l/� .t/// D ¡.l jW Œt �/ (3.121)

(the ellipsoid E.w?.t/; W .l/� .t// is tight).
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(vi) The next relations are true

[ fE.w?.t/; W .l/� .£//j < l; l >� 1g D W Œ£� D \fE.w?.t/; W
.l/

C .£//j < l; l >� 1g:
(3.122)

Further, passing to notations

H.t/ D W �1=2� .t/S.t/Q
1=2
B ; W .l/� .t/ D W�.t/

we also come to equation

PW� D A.t/W� C W�A0.t/ � H0.t/W� � W�H.t/; W�.t1/ D M; (3.123)

which may be used as well as (3.119).
The given theorem is formulated for tight ellipsoids placed along good curves of

type l.t/ D G0.t1; t/l . Equality (3.122) follows from conditions (3.121).

Exercise 3.10.1. Derive the formulas of Theorem 3.10.1 for A.t/ 6D 0:

In Fig. 3.9 presented is a picture related to calculating the reachability tube for
system5

Fig. 3.9 Reachability tube with one external and one internal approximation

5Thus example was worked out by P. Gagarinov.
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A.t/ D

0
BBBBBBBBBBB@

0 1 0 0 0 0 0 0

�1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

�1 0 �9 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 �1 0 �3 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 �1 0 �2 0

1
CCCCCCCCCCCA

; B.t/ D

0
BBBBBBBBBBB@

1

0

0

0

0:3

0

0

0

1
CCCCCCCCCCCA

;

X0 D I 2 R8�8; x0
0 D .0; : : : ; 0/ 2 DR8; P.t/ D 1; p.t/ D cos.2�t /I t 2D Œ0; 6�;

where given is the cross-section (“cut”) of its dynamic projection at time t D t� D 6

on the subspace L.t�/ orthogonal to vector .1; 0; 0; 0; 1; 0; 0; 0/0, with tight internal
and external ellipsoids touching the exact reach set along “good” direction at
l 0.t�/ D .1; 0; 0; 0; 1; 0; 0; 0/:

Remark 3.10.1. In the last two sections we have studied the behavior of tight
internal ellipsoidal approximations of reach sets and reach tubes. It shows
that Eqs. (3.110)–(3.112) with appropriately chosen parameter S.t/ (an orthogonal
matrix-valued function restricted by an equality) generate a family of internal
ellipsoids that touch the reach tube or its neighborhood from inside along a special
family of “good” curves that cover the whole tube. Such “good” curves are the
same as for the external approximations. The suggested techniques allow an on-
line calculation of the internal ellipsoids without additional computational burden
present in other approaches. The calculation of similar ellipsoids along any other
given smooth curve on the boundary of the reach tube requires additional burden as
compared with the “good” ones. The internal approximations of this paper rely on
relations different from those indicated in [35, 45, 174] and are relevant for solving
various classes of control and design problems requiring guaranteed performance.

3.11 The Problem of Control Synthesis: Solution Through
Internal Ellipsoids

We now pass to the construction of synthesizing target control strategies through
ellipsoidal methods. Without loss of generality, following the transformations of
Sect. 1.1, we may take A.t/ � 0. This is done by applying transformation Nx D
G.t1; t/x and getting for Nx the reduced equation, but keeping for it the original
notation x. Such a move will also allow to avoid some cumbersome calculations and
to present a clearer demonstration of the main relations, since now the “good” curves
will turn out to be straight lines and we will have W .l/� .t/ � H .l/.t/; G.t1; t/ � I .

Problem 3.11.1. Given is the system

Px D B.t/u; u 2 E.qB.t/; QB.t// D Q .t/ (3.124)
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and target set M D E.m; M/. One is to find a synthesizing strategy u D U �.t; x/,
that transfers system (3.124) from any position f£; x.£/g; x.£/ 2 W Œ£�, to the set
M at time t1, so that x.t1/ 2 M . The specified strategy u D U �.t; x/ must ensure
the existence of solutions to the differential inclusion

Px 2 B.t/U �.t; x/:

The solution to the given problem is well known and indicated in Sect. 2.6. It may
be found, once we know the solvability tube W Œt �; t 2 Œ£; t1�.

Namely, denoting

VC .t; x/ D d.x; W Œt �/

and taking the total derivative dVC .t; x/=dt ju at position ft; xg, due to Eq. (3.124),
under control u, one gets the desired strategy as

U �
e .t; x/ D

8<
:
�

u W dVC .t; x/=dt ju � 0j u 2 Q .t/

�
; if VC .t; x/ > 0 .x 62 W Œt �/;

Q .t/; if VC .t; x/ D 0 .x 2 W Œt �/:
(3.125)

It will be further indicated that also

U �
e .t; x/ D

�
arg min fdVC .t; x/=dt ju j u 2 Q .t/g ; if VC .t; x/ > 0 .x 62 W Œt �/;

Q .t/; if VC .t; x/ D 0 .x 2 W Œt �/:
(3.126)

This is the so-called extremal aiming rule (due to Krasovski, see [121, 123]).
We shall now demonstrate that the solution to Problem 3.11.1 may be obtained

by operating only with ellipsoidal functions.
Consider position f£; x.£/g, and a parameterized family of ellipsoidal tubes

E.w?.t/; W .l/� .t//; t 2 Œ£; t1�, constructed according to Theorem 3.10.1. For a given
position f£; xg; x D x.£/ the solution to Problem 3.11.1 exists if x 2 W Œ£�.

With x 2 int W Œ£� one may choose any control u 2 Q .£/, so the selection of
control solutions will evolve around the boundary of W Œ£� and beyond. We shall
start by supposing that given is position f£; x�g with x D x� 2 @W Œ£� on the
boundary of W Œ£�. We may then introduce an internal ellipsoid E.w?.£/; W�.£//

that touches its boundary at this x�: To do this we first note that with A.t/ � 0

the “good” curves that cover the tube W Œt �; t 2 Œ£; t1� are such that l.t/ � l�; is
constant. Hence we may further take l D l� to be the support vector of x� 2 @W Œ£�

so that the ellipsoid that touches would be with W�.£/ D W .l�/� .£//, namely

hl�; x.t/i D ¡.l� j W .l�/� Œ£�/: (3.127)

And such property will hold within the whole interval t 2 Œ£; t1�:

¡.l� j E.w?.t/; W .l�/.t// D hl�; w?.t/i C hl�; W .l�/� .t/l�i1=2;

along the selected “good curve” l.t/ � l�:
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The selection of vector l D l� and the related ellipsoid E.w?.t/; W .l�/� .£// is a
separate element of the solution process which is discussed further. But first recall
the following. Suppose for W�.t/ D W 0

?.t/W?.t/ we have

W?.t/ D SmM 1=2 �
Z t1

t

S.Ÿ/Q
1=2
B .Ÿ/dŸ; (3.128)

Then for any orthogonal-valued matrix Sm and matrix function S.t/; t 2 Œ£; t1� the
ellipsoid E.w?.t/; W .l�/� .t// 	 W Œt � will be an internal approximation of W Œt �:

However, if for a given vector l � l� we select Sm, S.t/ coordinated according to
relations

S.t/Q
1=2
B .t/l D œ.£/SmM 1=2l; œ.t/ D< l; QB.t/l >1=2< l; Ml >�1=2 :

(3.129)

Then, due to these relations, vectors SmM 1=2l and S.t/Q
1=2
B .t/l; 8t 2 Œ£; t1� will

be collinear. Hence, taking such Sm D S�
m; S.t/ D S�.t/ together with l D l�; and

taking W�.t/ D W .l�/� .t/; we will have

hl�; W .l�/� .t/l�i1=2 D hl�; M l�i1=2 C
Z t1

t

hl�; QB.s/l�i1=2ds; (3.130)

and since

PW�.t/ D PW 0
?.t/W?.t/ C W 0

?.t/ PW?.t/

we further get by direct calculation,

hl�; PW .l�/� .t/l�i1=2 D �hl�; QB.t/l�i1=2: (3.131)

Also note that if items l.t/ and Sm; S.t/ are not coordinated, as in (3.129),
then (3.130), (3.131) will turn into inequalities with D substituted by �.

Also observe that for any fl� W hl�; l�i D 1g, coordinated with related S�
m; S�.t/

according to (3.129), we also have

hl�; W .l�/� .t//l�i � hl; W .l�/� .t//li (3.132)

where l need not be coordinated with S�
m, S�.t/:

We further work with the selected tight tube E .l�/� Œt � substituted in place of the
solvability tube W Œt � of (3.129), while following exactly the respective “aiming”
scheme. To use the ellipsoidal tube is more convenient than the exact solvability
tube, since in the ellipsoidal case all the auxiliary operations may be presented in
explicit form.

To indicate the ways of finding the control solutions, we begin with the
nondegenerate case specified as follows:
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Assumption 3.11.1. Given set E .l�/� Œ£� D E.w?.£/; W .l�/� .£// that touches W Œ£�

internally, there exists © > 0 such that W .l�/� .£/ � ©I; 8t 2 Œ£; t1�:

Checking whether x D x.£/ 2 W Œ£�.
We first find if the distance dŒ£; x� D d.x.£/; W Œ£�/ > 0. Then

VC .£; x/ D dŒ£; x� D maxfhl; xi � ¡.l j W Œ£�/ j hl; li D 1g
D hl0; xi � ¡.l0 j W Œ£�/ D © > 0; (3.133)

and

hl0; xŒ£�i D © C hl0; x0Œ£�i; hl0; x0Œ£�i D ¡.l0 j W Œ£�/

so that x0 is the point in W Œ£� closest to x D x.£/ and x0 2 @W Œ£�: With l0

calculated, the solution U �.t; x/ to Problem 3.11.1 would be given by (3.125).
Now we will do the calculations of (3.133) through ellipsoids.
Synthesizing control strategies through ellipsoids.
We first have to find an internal ellipsoid E .l�/� Œ£� D E.w?.t/; W .l�/� .t// that

touches W Œ£� from inside at closest point x0Œ£�. And this will happen once l0 D l�;

with tube E .l�/� Œt � taken due to coordinated l�; S�
m; S�.t/; t 2 Œ£; t1�:

To ensure l0 D l� there are various options. Thus, for example
(i) we may take the distances del l Œ£� D d.x; E .l/� Œ£�/ over all internal ellipsoids

E .l/� Œ£�/ D E.w?.£/; W .l/� .£// whatever be l; Sm; S.�/ and find its minimum over
unit vectors l and orthogonal matrices Sm, S.t/, arriving at

VC .£; x/ D dŒ£; x� D minfdel l Œ£� j hl; li D 1; SmS 0
m D I; S.t/S 0.t/ D I;

t 2 Œ£; t1�g D d 0
el l Œ£�:

or (ii) we may select among internal ellipsoids E .l/� Œ£� that internally touch the
boundary @W Œ£� the one that does it for l D l� D l0. This may not need to calculate
the whole reach set.6 Then vector l� with related W .l�/� Œ£� are those that satisfy

VC .£; x/ D minfd.x; xl / j hl; li D 1g D d.x; x�/; xl D x�; l D l�:

The corresponding equations for finding an ellipsoid E .l/� Œt � D E.w?.t/; W .l/� .t//

which touches W Œt � at point xl 2 @W Œ£� with support vector l are

�
w?.t1/ D m;

Pw? D qB.t/I

(
W?.t1/ D SmM 1=2;

PW?.t/ D S.t/Q
1=2
B .t/:

(3.134)

6If W Œt � is already calculated, the procedure is simple.
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Here

W?.t/ D W?.t1/ �
Z t1

t

S.Ÿ/Q
1=2
B .Ÿ/dŸ; W�.t/ D W 0

?.t/W?.t/;

QB.t/ D B.t/Q.t/B 0.t/ and vectors SmM 1=2l; S.Ÿ/Q
1=2
B .Ÿ/l should be collinear.

Now suppose Assumption 3.11.1 is true and the tight tube E .l�/� Œt �; l� D l0 is
already selected. Then the ellipsoidal control strategy U ?

e .t; x/ is defined, starting
from t D £; in the following way. Taking

Ve.t; x/ D d.x; E.w?.t/; W .l�/� .t/// D min
z

fhx � z; x � zi j z 2 E .l�/� Œt �g D

D max
l

fhl; x �w?.t/i�¡.l j E�.0; W .l�/� .t// j hl; li D 1g D hl0; xi�hl0; W .l�/� .t/l0i1=2;

(3.135)

we observe that the maximizer l0 of this problem is unique and due to (3.132) we
have

hl0; xi D hl0; w?.t/i C hl0; W .l�/� .t/l0i1=2 D ¡.l0 j E�.w?.t/; W .l�/� .t/// �

� ¡.l0 j W .t//

Then, following the reasoning of Sect. 2.6, we get for dŒx.t/; E.w?.t/;

W .l�/� .t//� > 0 the strategy

U �
e .t; x/ D

8<
:

arg min

�
dVe.t; x/=dt ju

ˇ̌
ˇ̌ u 2 E.q.t/; Q.t//

�
; if x 62 E.w?.t/; W .l�/� .t//;

E.q.t/; Q.t//; if x 2 E.w?.t/; W .l�/� .t//:

(3.136)

Since l� D l0 this gives

U �
e .t; x/ D

(
q.t/ � Q.t/B 0.t/l0 < l0; QB.t/l0 >�1=2; if x 62 E.w?.t/; W .l0/� .t//;

E.q.t/; Q.t//; if x 2 E.w?.t/; W .l0/� .t//:

(3.137)

We further show that the ellipsoidal strategy U �
e .t; x/ of (3.137) does solve the

problem of control synthesis if the starting position f£; xg is such that x D x.£/ 2
@E.w?.£/; W .l0/� .£// for related l0 and also x.£/ 2 @W Œ£�: Indeed, suppose x.£/ 2
E .l0/� Œ£�, and xŒt � D x.t; £; x.£// that satisfies Eq. (3.124) with u 2 U �

e .t; x/; £ �
t � t1; is the respective trajectory that emanates from f£; x.£/g. We will demonstrate
that any such solution xŒt � of (3.124) will guarantee the inclusion xŒt1� 2 E.m; M/.
To do that we will need, as in Sect. 2.6, to know the total derivative dVe.t; x/=dt

for Ve.t; x/ > 0.
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Recalling

Ve.t; xŒt �/ D dŒt � D d0.t; xŒt �/ D< l0; xŒt � > �¡.l0 j E .l0/� Œt �/;

for dŒt � > 0, and due to the uniqueness of the maximizer l� D l0 6D 0, we have

d

dt
d Œt � D d

dt
.< l0; xŒt � > �¡.l0jE .l0/� Œt �//;

so that

d

dt
d Œt � D< l0; PxŒt � > � @

@t
¡.l0jE�.w?.t/; W .l0/.t// D (3.138)

D< l0; B.t/.u � q.t// > � d

dt
< l0; W .l0/� .t/l0 >1=2 :

Then from (3.131), with u D u0
e 2 U �

e .t; x/ we have:

< l0; B.t/.u0
e�q.t// > � d

dt
< l0; W .l0/� .t/l0 >1=2� hl0; B.t/.u0

e�q.t//iChl0; QB.t/l0i:
(3.139)

Here l0 D l� is coordinated with S�
m; S�.t/; so (3.131) gives an inequality.

From here it follows that with u D u0
e 2 U �

e .t; x/ of (3.137), and vector l0 D
l0.t; x/ of (3.135) we ensure the inequality

d

dt
d Œt �

ˇ̌
ˇ̌
u

� 0:

Summarizing, we finally have

U �
e .t; x/ D arg minf< l0; B.t/u > ju 2 E.q.t/; Q.t//g: (3.140)

Integrating ddŒt �=dt D dd0.t; x.t//=dt from £ to t1 , along any trajectory
x.t; £; x.£// generated by u D u0

e 2 U �
e .t; x/; we get

Ve.t1; x.t1// D d0.t1; x.t1// D d.x.t1/; E.m; M// � d0.£; x.£// D Ve.£; x.£// D 0

which means x.t1/ 2 E.m; M/, provided x.£/ 2 E .l0/� Œ£� 	 W Œ£�, whatever be the
solution to

Px 2 B.t/U �
e .t; x/; t 2 Œ£; t1�;

generated from position f£; xg; x 2 W Œ£�.
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We thus came to

Theorem 3.11.1. The solution to Problem 3.11.1 (with A.t/ � 0) is given by the
“ellipsoidal strategy” U �

e .t; x/ of (3.140).

Exercise 3.11.1. Prove an analogy of Theorem 3.11.1 for system (3.1) with
A.t/ 6D 0:

We now indicate some techniques for finding l0.

Calculating l 0

The scalar product hx; zi taken above, in solving Problem 3.11.1, may be substituted
for one of more general kind, namely by hx; T zi; T D T 0 > 0; hx; T xi D kxkT ;

so that in the above we took T D I: However we will also need to consider T 6D I;

since the calculation of vector l0 is especially simple if one takes T �1 D W .l0/� .t/.
Therefore, before moving towards the proof that control (3.136) does indeed

solve Problem 3.11.1, we first look at how to calculate l0. Namely, we have to find
the distance dŒt � > 0 in the more general form as

dŒt � D VT .t; x/ D dT Œt; x� D dT .x; E.w?.t/; W .l�/� .t/// D

D maxf< T l; x � w?.t/ > �hT l; W .l�/� .t/T li1=2/ j < l; T l >� 1g; (3.141)

where VT .t; x/ D Ve.t; x/ if T D I: This problem is solved through simple
optimization techniques. Here is its solution.

An auxiliary optimization problem. Consider a nondegenerate ellipsoid E D
E.y�; Y /; Y D Y 0 > 0: We need to find

V .t; x/ D min
y

fhx � y; T .x � y/i1=2 j y 2 Eg:

Clearly, with V.t; x/ > 0,

min
y

fkx � ykT j y 2 Eg D min
y

fmax
l

fhx � y; liT j klkT � 1g j y 2 Eg D

D max
l

fhx; liT C min
y

f�hy; liT / j y 2 E g j klkT � 1 g D

D max
l

fhx; liT � ¡.T l jE/ j klkT � 1g D hx; l0iT � ¡.T l0j E/:

Here l0 is the maximizer of function hx; liT � ¡.T l jE/.



138 3 Ellipsoidal Techniques: Reachability and Control Synthesis

In view of

¡.T l jE/ D hy�; T li C hT l; Y T li1=2 D hy�; liT C kT lkY ;

we find

V .t; x/ D max
l

fhx � y�; liT � kT lkY j klkT � 1g : (3.142)

Lemma 3.11.1. For dT Œt � > 0 the distance between given point x 2 Rn and
ellipsoid E D E.y�; Y / � Rn; Y D Y 0 > 0 is the solution to optimization
problem (3.142), with T D T 0 > 0:

Finding the solution to (3.142) may be pursued with various matrices T .
We emphasize two cases–when T D I and T D Y �1:

Case (a) : T D I

Referring to Lemma 3.11.1, we use the standard Euclid metric, taking, y� D
w?; Y D T . Then relations (3.137)–(3.140) remain without formal change.

Now V .t; x/ of (3.142) transforms into

V .t; x/ D max
l

n
hx � w?; li � klk

W
.l�/

�

j klk � 1
o

D (3.143)

D d.x � w?; E.0; W .l�/� // D min
p

fkz � pk j hp; .W .l�/� /�1pi � 1; z D x � w? g:

For kzkT > 1; T D .W .l�/� /�1; this may be reduced to finding minpfkz �
pk2 j hp; .W .l�/� /�1pi D 1g > 0 through conventional Lagrangian techniques.
The related Lagrangian is

L.p; œ/ D hz � p; z � pi C œ.hp; .W .l�/� /�1pi � 1/

with

L 0
p.p; œ/ D 2..z � p/ C œ.W .l�/� /�1p/ D 0; so that p D .I � œ.W .l�/� /�1/�1z:

Multiplier œ satisfies equation h.œ/ D 0; where

h.œ/ D h.I �œ.W .l�/� /�1/�1z; .W .l�/�1
.I �œ.W .l�/� /�1/�1zi�1 D hp; .W .l�/� /�1pi�1:

Here h.0/ > 0 and with œ ! 1 we have lim h.œ/ D �1; so there exists a root
œ0 > 0 of equation h.œ/ D 0. This root œ0 is unique, since h0.œ/ < 0: We have thus
found

d.x � w?; E.0; W .l�/� // D kz � p0k; p0 D .I � œ0.W .l�/� /�1/�1z

and the element of E.w?; W .l�/� / closest to x is x� D w? C p0:
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Summarizing we come to the conclusion

Lemma 3.11.2. (i) The vector l0 which solves (3.143) (or (3.142)) under T D I

is

l0 D
�

0; if hx � w?; .W .l�/� /�1.x � w?/i � 1 .x 2 E.w�; W .l�/� //;

.x � x�/kx � x�k�1; otherwise;
(3.144)

Here x� 2 E.w?; W .l�/� / is the closest to x in the Euclid metric and

x� D w? C p0; p0 D .I � œ0.W .l�/� /�1/�1.x � w?/:

(ii) The related controls are then specified by (3.137) with w? D w?.t/; W .l�/� D
W .l�/� .t/; p0 D p0.t/:

Exercise 3.11.2. Work out the formulas for the “ellipsoidal strategy” U �.t; x/ of
Problem 3.11.1 for A.t/ 6D 0:

Case (b) : T D Y �1

This is the simpler case. Indeed, substituting Y �1 for T , we transform (3.142)
into

V .t; x/ D max
l

fhx � y�; liT � klkT j klkT � 1g : (3.145)

Due to the inequality of Cauchy–Bunyakovski–Schwartz we now have

hx � y�; liT � klkT � kx � y�kT klkT � klkT ;

with equality attained at l D œ.x � y�/; œ � 0: Since hl; T li D 1; this gives
œ D kx � y�k�1

T , so that under T D Y �1 the maximizer of (3.142) is

l0
T D

�
0; if kx � y�kT � 1;

.x � y�/kx � y�k�1
T ; otherwise:

(3.146)

Hence, with V .t; x/ > 0 .x … E.y�; Y //, we have

V .t; x/ D max
l

fkx � y�kT klkT � klkT j hl; T li � 1ig D kx � y�kT � 1:

(3.147)
Otherwise, with x 2 E ; we have V .t; x/ D 0:

The element y0 D y� C q0 2 E.y�; Y / closest to x is found as follows:
find

min
y

fkx � ykY �1 j y 2 E.y�; Y /g D min
q

fkx � .y� C q/kY �1 j q 2 E.0; Y /g

D kx � .y� C q0/kY �1 :
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Then y0 � y� D q0, so that kq0kY �1 D ky0 � y�kY �1 D 1 (y0 lies on the boundary
of E.y�; Y /).

Lemma 3.11.3. (i) Under T D Y �1 the distance in metric kx � ykT between
x … E and ellipsoid E D E.y�; Y / is

V .t; x/ D d.x; E/T D maxf0; kx � y0kT � 1g:

(ii) The optimizer l0
T in problem (3.147) under metric kx �ykT ; T D Y �1 is given

by (3.146).
(iii) The element of E closest to x under metric kx � ykT is

y0 � y� D q0; kq0kT D 1:

Exercise 3.11.3. In the previous lemma show that vectors l0
T of (ii) and p0 of (iii)

are collinear.

We now return to the original Problem and apply the previous Lemma 3.11.3 to
find the synthesizing control U �

e .t; x/: In terms of Problem 3.11.1 we have: x D
x.t/; y� D w?.t/; Y D W .l�/� .t/:

Now, in order to rewrite these results in terms of Lemma 3.11.3, we need to
substitute its l0 by T l0 D l0

T ; T D .W .l�/� /�1, with metric kx � ykT D hx � y;

.W .l�/� /�1.x � y/i1=2: We thus get

l0
T D

�
0; if kx.t/ � w?.t/kT � 1;

.x.t/ � w?.t//kx.t/ � w?.t/k�1
T ; otherwise:

(3.148)

The related control u�
Te.t; x/, for x.t/ … E ; is then found due to (3.140), as

u�
Te.t; x/ D q.t/ � Q.t/B 0.t/l0

T hl0
T ; QB.t/l0

T i�1=2:

After following (3.140) and recalling QB.t/ D B.t/Q.t/B 0.t/, this yields the
solution strategy

U �
Te.t; x/ D

8<
:

q.t/ if x 2 E.w?.t/; W .l�/� .t//;

q.t/ � Q.t/B 0.t/.x.t/ � w?.t//kQ1=2.t/B 0.t/.x.t/ � w?.t//k�1
T ;

if x 62 E.w?.t/; W .l�/� .t//:
(3.149)

Exercise 3.11.4. By direct substitution of u D U �
Te.t; x/ into (3.124) prove the

following:

(i) the existence of solution to (3.124) under such substitution,
(ii) that u D U �

Te.t; x/ does solve Problem 3.11.1.
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Remark 3.11.1. A solution in the absence of Assumption 3.11.1 has to deal with
degenerate internal ellipsoids. The calculation of related controls then has to
undergo a procedure of regularization. This issue will be treated at the end of
Chap. 4.

The given scheme thus describes the applicability of ellipsoidal techniques
to the calculation of trajectory tubes for controlled systems with further design
of synthesizing controls within a fairly simple scheme as compared to existing
methods. This scheme is realized in the ellipsoidal toolbox used further to solve
the presented examples (see [45, 132]).

3.12 Internal Approximations: The Second Scheme

Apart from the techniques for internal approximation of sets and tubes given in
Sects. 3.7–3.10, there exists another set of formulas which may be used for the same
purpose. The restrictive element in this “second approach” is that here the ellipsoidal
approximations are derived through operations with only a pair of ellipsoids rather
than any number of these as in the above. The treatment of internals for sums of
ellipsoids may therefore be achieved only through an inductive sequence of pairwise
operations rather than through a single operation. Nevertheless this scheme turns out
to be useful and is also being recommended. The scheme was discussed in [174] (see
also [45]).

We shall calculate the reachability set X Œt � D X .t; t0; X0/ for system (3.1) with
v.t/ � 0: Using the funnel equation (2.54), we have

.I C ¢A.t//X Œt � C ¢E.qB.t/; QB.t// 	 X Œt C ¢� C o1.¢/B.0/; (3.150)

where B.0/ D fx W hx; xi � 1g,

¢�1o1.¢/ ! 0 if ¢ ! 0:

With X Œt � being an ellipsoid of type

X Œt � D E.x?.t/; X�.t//; X�.t/ > 0;

we may apply the following formula. For two given ellipsoids E.a.1/; X1/;

E.a.2/; X2/; X1 D X 0
1 > 0; X2 D X 0

2 > 0; it indicates the matrix

X�.H/ D H �1Œ.HX1H 0/1=2 C .HX2H 0/1=2�2H 0�1; (3.151)

where H 2 † and

† D fH 2 Rn�n W H 0 D H; jH j 6D 0g:

(Matrices H are therefore symmetrical and nondegenerate.)
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Matrix X� ensures the relations

E.a.1/ C a.2/; X�.H// 	 E.a.1/; X1/ C E.a.2/; X2/; 8H 2 †; (3.152)

and

E1;2 D
[

fE.a.1/ C a.2/; X�.H// j H 2 †g D E.a.1/; X1/ C E.a.2/; X2/:

(3.153)
If one of the two ellipsoids is degenerate, say X2 � 0; then the union E1;2 at the
left-hand side of (3.153) should be substituted by its closure E1;2.

Applying the last relations to (3.150), with X Œt � D E.x?.t/; X�.t// being an
ellipsoid, we take

X1 D .I C ¢A.t//X�Œt �.I C ¢A.t//0; X2 D ¢2B.t/Q.t/B 0.t/:

Then in view of (3.152) we have

X Œt C ¢� C o1.¢/B.0/ 
 E.x?.t C ¢/; X�.t C ¢//;

where

X�.t C ¢/ D H �1.t/ŒH.t/X�.t/H 0.t/ C
C ¢.A.t/X�.t/ C X�.t/A0.t// C ¢2A.t/X�.t/A0.t/ C
C ¢.H.t/.I C ¢A.t//X�.t/.I C ¢A0.t//H 0.t// 1

2 .H.t/QB.t/H 0.t// 1
2 C

C ¢.H.t/QB.t/H 0.t// 1
2 .H.t/.I C ¢A.t//X�.t/.I C ¢A0.t//H 0.t// 1

2 C
C ¢2H.t/QB.t/H 0.t/�H 0�1.t/;

and

x?.t C ¢/ D .I C A.t/¢/x?.t/ C ¢B.t/q.t/:

From here, after subtracting X�.t/ from both sides, then dividing them by ¢ and
applying a limit transition with ¢ ! 0, we come to ordinary differential equations

PX�.t/ D A.t/X� C X�A0.t/ C H �1..H.t/X�.t/H 0.t// 1
2 .H.t/QB.t/H 0.t// 1

2 C

C .H.t/QB.t/H 0.t// 1
2 .H.t/X�.t/H.t//

1
2 /.H �1/0; (3.154)

Px? D A.t/x? C B.t/q.t/; (3.155)
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with initial conditions

x?.t0/ D x0 ; X�.t0/ D X0 :

What follows from here is the inclusion

X Œt � 
 E.x?.t/; X�.t//; (3.156)

where x?.t/; X�.t/ satisfy (3.154), (3.155) and H.t/ is a continuous function of t

with values in †—the variety of symmetric nondegenerate matrices.
This leads us to the next conclusion.

Theorem 3.12.1. The internal approximation of the reachability set X Œt � D
X .t; t0; E.x0; X0// for system (3.1) is given by the inclusion (3.156), where
x?.t/; X�.t/ satisfy Eqs. (3.155) and (3.154). Moreover, the following representa-
tion is true

X Œt � D [fE.x?.t/; X�.t//jH.�/ 2 †g; (3.157)

where the union is taken over all measurable matrix-valued functions with values
in †.

Remark 3.12.1. The closure of the union of sets at the right-hand side of equal-
ity (3.157) appears due to the fact that matrix QB D B.t/Q.t/B 0.t/ may turn out
to be degenerate. Then the exact reachability set X Œt � may have kinks while being
approximated by internal ellipsoids all of which are nondegenerate. This effect is
absent in the “first approach” of Sects. 3.7–3.10 which allows degenerate elements
among the internal approximating ellipsoids.

One should note that internal approximations of reachability sets by nondegen-
erate ellipsoids require that the “reach set” itself would be nondegenerate.

Definition 3.12.1. A reachability set X Œt � is said to be nondegenerate if there exists
an n-dimensional ball B©.c/ D fx W< x � c; x � c >� ©g of radius © > 0, such that
B©.c/ 	 X Œt �:

In other words, set X Œt � a nonempty interior. The last property may arise either from
the properties of the system itself and its constraints or from the degeneracy of the
starting set X Œt0�, or from both factors. To check degeneracy due to the system itself
it suffices to deal with reach sets of type X Œt � D X .t; t0; f0g/; emanating from point
x.t0/ D 0:

Consider system

Px 2 A.t/x C B.t/E.q.t/; Q.t//; (3.158)

x.t0/ D 0;

where B.t/ is continuous and q.t/ 2 Rp; Q.t/ 2 Rp�p; p < n are also continuous.
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The parameters of this system allow to generate the set-valued integral

X �Œt � D
tZ

t0

G.t; s/B.s/E.0; Q.s//ds; (3.159)

where matrix G.t; s/ is defined in Sect. 1.1.

Assumption 3.12.1. There exists a continuous scalar function “.t/ > 0; t > t0;

such that the support function

¡.l jX �Œt �/ � “.t/ < l; l >1=2;

for all l 2 Rn; t � t0.

With Q.t/ > 0; t > t0; this assumption implies that the reachability domain
X Œt � of system (3.158) has a nonempty interior (intX Œt � ¤ ;) and is therefore
nondegenerate. Assumption 3.12.1 is actually equivalent to the requirement that
system (3.158) with unbounded control u.t/ would be completely controllable
[109, 195], on every finite time interval Œt0; t �.

Exercise 3.12.1. Prove that under Assumption 3.12.1 and with Q.t/ > 0; t > 0;

x.t0/ D 0 the reachability set X Œt � for system (3.158) is nondegenerate. (Use
Exercise 1.4.2.)

In a similar way the “second approach” may be applied to the approximation of
backward reachability sets W Œ£�. A reasoning similar to the above in this section
gives the result.

Theorem 3.12.2. The internal approximation of the backward reachability set
W Œt � is given by the inclusion

E.w?.t/; W�Œt �/ 	 W Œt �;

where fw?.t/; W�Œt �g satisfy Eq. (3.114) and

PW�.t/ D A.t/W�.t/ C W�.t/A0.t/� (3.160)

H �1.t/Œ.H.t/W�.t/H 0.t// 1
2 .H.t/QB.t/H 0.t// 1

2

C .H.t/QB.t/H 0.t// 1
2 .H.t/W�.t/H.t//

1
2 �H 0�1.t/ ;

with boundary conditions x.t1/ D m; W�Œt1� D M:

Moreover,the following representation is true

W Œt � D [fE.w?.t/; W�.t//jH.�/ 2 †g; (3.161)

where the union is taken over all measurable matrix-valued functions with values
in †.
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Problem 3.11.1 of ellipsoidal control synthesis is then solved according to the
scheme of Sect. 3.10.

Exercise 3.12.2. (i) Prove formulas (3.160) and (3.161).
(ii) Design an ellipsoidal synthesis for Problem 3.11.1 using Eq. (3.161) and prove

that it solves the problem.7

7Such a proof is indicated in [174, Sect. 3.6, p. 212].



Chapter 4
Solution Examples on Ellipsoidal Methods:
Computation in High Dimensions

Abstract In this chapter we describe solution examples for controlled systems that
illustrate the contents of Chaps. 1–3. These include the multiple integrator, planar
Newtonian motions and calming down a chain of springs. Special sections are
devoted to relevant computational formulas and high-dimensional systems. Also
discussed are possible degeneracy effects in computation and the means of their
avoidance.

Keywords Multiple integrator • Newtonian motion • Oscillating system
• Graphic illustration • Regularization • High dimensions

In this chapter we first present examples of control problems discussed above. All
these problems are treated in finite time. The solutions are reached through the
theory given in Chaps. 1, 2 and the computation is done using methods of Chap. 3.1

The second part deals with specifics of calculation for systems of high
dimensions.

We begin with the examples.

4.1 The Multiple Integrator

The calculation of reach sets for a two-dimensional system with one integrator was
treated in detail in Chap. 3, Sect. 3.9. We continue now by dealing with the multiple
integrator with single input given by system (i D 1; : : : ; n � 1I n � 2)

� Pxi D xiC1;

Pxn D b.t/u
(4.1)

1The illustrations for the presented solutions were provided by N.Bairamov, A.Mesiats,
D.Odinokov, and V.Stepanovich.
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with b.t/ taken continuous. The fundamental transition matrix for this system is

G.t; s/ D

0
BBB@

1 t � s : : : .t � s/n�1=.n � 1/Š

0 1 : : : .t � s/n�2=.n � 2/Š
:::

:::
: : :

:::

0 0 0 1

1
CCCA

Here, with initial conditions x0
1 D 0; : : : ; x0

n D 0; we have

x1.t/D
Z t

0
: : :

Z Ÿn�1

0
b.Ÿn/u.Ÿn/dŸn : : : dŸ1D

Z t

0

�
.t�s/n�1..n � 1/Š/�1b.s/u.s/

�
ds

which is an iterated integration of multiplicity n.

Exercise 4.1.1. Is system (4.1) controllable?

Example 4.1. For system (4.1) assume x D .x1; : : : ; xn/0; x 2 Rn; and n � n -
matrix X0 D X00

> 0. Find the forward reach set X Œt � D X .t; t0; X 0/ from starting
position ft0; X 0g; under constraint ju.s/j � �; with

X 0 D fx W hx � x0; .X0/�1.x � x0/i � 1g:

Note that system (4.1) is written in the form

Px D Ax C B.t/u; u 2 Q .t/; t � t0; (4.2)

where Q .t/ D fu W juj � �g and

A D

0
BBBBBBBB@

0 1 0 � � � 0 0

0 0 1 � � � 0 0

0 0 0 � � � 0 0
:::

:::
:::

: : :
:::

:::

0 0 0 � � � 0 1

0 0 0 � � � 0 0

1
CCCCCCCCA

; B.t/ D

0
BBBBBBBB@

0

0

0
:::

0

b.t/

1
CCCCCCCCA

:

In order to calculate the reach sets for this system we shall follow Chap. 1 and
transform the coordinates so that the new system has A � 0 and a new matrix
B . Applying transformation z.t/ D G.t0; t/x.t/; t � t0 to (4.2), (see Sect. 1.1,
formula (1.6)), we get

Pz D B.t/u; B.t/ D G.t0; t/B.t/: (4.3)
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We consider this system without loss of generality, under the same starting set X 0

and same constraint on control u as before. Now, with t � t0 , the forward reach
set is

XzŒt � D X 0 C
Z t

t0

B.s/Q .s/ds; (4.4)

while in the original coordinates

X Œt � D X .t; t0; X 0/ D G.t; t0/X 0 C
Z t

t0

G.t; s/B.s/Q .s/ds: (4.5)

Recall that here the transformation

z.t/ D G.t0; t/x.t/ D

0
BBB@

1 t � s : : : .t0 � t /n�1=.n � 1/Š

0 1 : : : .t0 � t /n�2=.n � 2/Š
:::

:::
: : :

:::

0 0 : : : 1

1
CCCA x.t/

and

B.t/ D

0
BBB@

.t0 � t /n�1=.n � 1/Š

.t0 � t /n�2=.n � 2/Š
:::

1

1
CCCA b.t/:

We now return in (4.3)–(4.4) from boldface letter B to ordinary B , getting Px D
B.t/u; where B.t/ is time-dependent even when the original system (4.2) is time-
invariant.

We begin with some examples on calculating forward reach sets through
ellipsoidal approximations.

Given X 0 D E.x0; X0/; Q .t/ D E.q.t/; Q.t//; M D E.m; M/, we now
assume

Q .t/ D E.qb.t/; QB.t//; QB.t/ D B.t/Q.t/B 0.t/; qb.t/ D B.t/q.t/;

X 0
z D X 0; so that we deal with system

Pz D B.t/u; z.t0/ 2 E.x0; X0/; u 2 Q .t/; t � t0: (4.6)

The required reach set is now

XzŒt � D E.x0; X0/ C
Z t

t0

QB.s/ds
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with its internal and external approximating ellipsoids being E.x�
z .t/; Xz�.t//;

E.x�
z .t/; XzC.t//: These are given by

x�
z .t/ D x0 C

Z t

t0

qb.s/ds; (4.7)

Xz�.t/ D X�0

z�.t/X�
z�.t/; X�

z�.t/ D .X0/1=2 C
Z t

t0

S.s/Q
1=2
B .s/ds; .S0 D I /;

(4.8)

XzC.t/ D
�

hl; X0li1=2 C
Z t

t0

hl; QB.s/li1=2ds

� 
X0

hl; X0li1=2
C
Z t

t0

QB.s/

hl; QB.s/li1=2
ds

!
;

(4.9)

where S.t/ D S.t I l/ is an orthogonal matrix, so that S 0.t/S.t/ D I .
The reach set XzŒt � is approximated as

E.x�
z .t/; Xz�.t// 	 XzŒt � 	 E.x�

z .t/; XzC.t//; (4.10)

where tightness ensures that the support functions

¡.l j E.x�
z .t/; Xz�.t// D ¡.l j XzŒt �/ D ¡.l j E.x�

z .t/; XzC.t//

along good curves l.t/ 2 Rn: (See Sect. 3.3.) Here the good curves lz.t/ � lz.t0/ D
l turn out to be constant. Therefore the previous relations turn into equalities for
any l under proper selection of parameterizing coefficients �.t/; S.t/; in ODEs that
describe functions x�

z .t/, Xz�.t/, XzC.t/ for the approximating ellipsoids.
These ODEs are

(
x�

z .t0/ D x0;

Px�
z D qb.t/I

(
X�

z�.t0/ D .X0/1=2;

PX�
z� D S.t/Q

1=2
B .t/I

8<
:

XzC.t0/ D X0;
PXzC D �.t/XzC C ��1.t/QB.t/

(4.11)

with

�.t/ D hl; QB.t/li1=2

�
hl; X0li1=2 C

Z t

t0

hl; QB.s/li1=2ds

��1

and with matrices S 0.t/S.t/ D I; selected such that vectors .X0/1=2l; S.t/Q
1=2
B .t/l

are collinear.
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Returning to the original coordinates fxg , we have

E.x�.t/; XCŒt �/ 	 X Œt � 	 E.x�.t/; X�Œt �/; (4.12)

where x�Œt � D G.t; t0/x�
z Œt �, and

XCŒt � D G.t; t0/XzCŒt �G0.t; t0/; X�Œt � D G.t; t0/Xz�Œt �G0.t; t0/:

Remark 4.1.1. In further relations below we omit the lower indices z for all the
related variables in (4.12).

For the backward reach sets the passage to new coordinates fzg is given by
z.t/ D G.ª; t/x.t/; t � ª: Then, with given target set M D E.m; M/, we
again have Eq. (4.6) and in these new coordinates the backward reach set W Œt � D
W .t; ª; M /; M D E.m; M/ also allows tight ellipsoidal approximations

E.w�.t/; W�.t// 	 W Œt � 	 E.w�.t/; WC.t//:

The parameterized functions w�.t/; WC.t/; W�.t/ may also be calculated
directly, through equations of Chap. 3 (see (3.97), (3.59), (3.98), (3.99)). The
corresponding ODEs are

(
w�.ª/ D m;

Pw� D qb.t/I

(
W �� .ª/ D M 1=2;

PW �� D S.t/Q
1=2
B .t/I

(
WC.ª/ D M;
PWC D ��.t/WC � ��1.t/QB.t/:

(4.13)

Here

�.t/ D hl; QB.t/li1=2

 
hl; M li1=2 C

Z ª

t

hl; QB.s/li1=2ds

!�1

with

W� D W ��
0
W �� ; W �� D .W 0/1=2 �

Z ª

£

S.t/Q
1=2
B .t/dt;

and S 0.t/S.t/ D I; while vectors M 1=2l; S.t/Q
1=2
B .t/l are collinear.

4.1.1 Computational Results

Demonstrated here are the projections of reachability sets for system (4.2) of
dimension Dim = 4 and 8 on the plane fx1; x2g at time ª: N stands for the number
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Fig. 4.1 N D 5; Dim D 4. Internal and external estimates

of approximating ellipsoids. The related parameters are x0 D 0; £ D 0; ª D 2 for
dimension 4 and ª D 3 for dimension 8; q D 0; Q D 1;

X0 D

0
BBB@

1 0 � � � 0

0 0:001 � � � 0
:::

:::
: : :

:::

0 0 � � � 0:001

1
CCCA :

The directions l that ensure tight approximations are selected for time ª to be a
uniform partition on the unit circle in the plane fx1; x2g (Figs. 4.1, 4.2, 4.3, 4.4, 4.5,
4.6, 4.7, and 4.8).

4.2 A Planar Motion Under Newton’s Law

This is the motion of a particle of mass m > 0 given by system

8̂
<̂
ˆ̂:

Px1 D x2;

m Px2 D b1u1;

Px3 D x4;

m Px4 D b2u2

(4.14)

with b1; b2 > 0; t 2 Œt0; ª�:
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Fig. 4.2 N D 5; Dim D 4. Internal estimates and their convex hull

Fig. 4.3 N D 20; Dim D 4. Internal and external estimates
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Fig. 4.4 N D 20; Dim D 4. Internal estimates and their convex hull

Fig. 4.5 N D 5; Dim D 8. Internal and external estimates
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Fig. 4.6 N D 5; Dim D 8. Internal estimates and their convex hull

Fig. 4.7 N D 20; Dim D 8. Internal and external estimates
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Fig. 4.8 N D 20; Dim D 8. Internal estimates and their convex hull

Taking further m D 1, we may transform this system to canonical first-order
form, which is

8̂
<̂
ˆ̂:

Px1 D x2;

Px2 D b1u1;

Px3 D x4;

Px4 D b2u2:

(4.15)

Our first task will be to find forward and backward reach sets

X Œª� D X .ª; t0; X 0/; X 0 D E.x0; X0/; W Œt � D W .t; ª; M /; M D E.m; M/

under constraints

u.t/ D u D
�

u1

u2

�
2 Q .t/ D E.q.t/; Q.t//; x.t0/ D x.0/ 2 X 0:

Denote

x D

0
BB@

x1

x2

x3

x4

1
CCA ; A D

0
BB@

0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

1
CCA ; u D

�
u1

u2

�
; B D

0
BB@

0 0

b1 0

0 0

0 b2

1
CCA :
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Then system (4.14) has the form (4.2), here with B D const: The fundamental
matrix of its homogeneous part has the form G.t; £/ D exp A.t � £/; where Ak D
0; k � 2: Hence

G.t; £/ D eA.t�£/ D I C A.t � £/ D

0
BB@

1 t � £ 0 0

0 1 0 0

0 0 1 t � £

0 0 0 1

1
CCA :

Using transformation z D G.t0; t/x; t � t0; taking B.t/ D G.t0; t/B the
system (4.14) may be transformed, as in the previous section (see (4.6)), but without
changing original notations, into

Px D B.t/u.t/; u.t/ 2 Q .t/ D E.qB.t/; QB.t//; t � t0; (4.16)

with

B.t/ D G.t0; t/B D

0
BB@

.t0 � t /b1 0

b1 0

0 .t0 � t /b2

0 b2

1
CCA ; qB.t/ D B.t/q;

B.t/Q.t/B0.t/ D QB.t/:

Returning now from boldface B to B , the forward reach set will be

XzŒt � D Xz.t; t0; X 0/ D X 0 C
Z t

t0

B.s/Q .s/ds:

With X 0 D E.x0; X0/ and support function

¡.l j XzŒt �/ D (4.17)

hl; x0i C hl; X0li1=2 C
Z t

t0

.hl; qB.t/i C hl; QB.t/li1=2/dt:

Similarly, for the backward reach set we use transformation z D G.ª; t/x; t � ª;

and take B.t/ D G.ª; t/B: Then system (4.14), without changing notations, may
be again transformed into (4.17), but now with t � ª: Here we also return from
boldface B to B:

For target set M D E.m; M/ the backward reach set will be

WzŒt � D Wz.t; ª; M / D M �
Z ª

t

B.s/Q .s/ds
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with support function

¡.l j WzŒt �/ D (4.18)

hl; mi C hl; M li1=2 �
Z ª

t

.hl; qB.t/i � hl; QB.t/li1=2/dt:

The ellipsoidal approximations of XzŒt �; WzŒt � are given by relations
(4.7)–(4.13).

4.2.1 Computational Results

Forward Reach Sets

Presented are calculations of the forward reach set X Œ1� D X .1; 0; E.x0; X0// for
the four-dimensional system

Px D B.t/u; b1 D 2; b2 D 1; t 2 Œ0; 1� (4.19)

and

x0 D

0
BB@

0

0

0

0

1
CCA ; X0 D

0
BB@

3 0 0 0

0 1 0 0

0 0 1 0

0 0 0 3

1
CCA ; q D

�
1

1

�
; Q D

�
1 0

0 4

�
:

Indicated are two-dimensional projections of external and internal ellipsoidal
approximations for X Œt � on the system of coordinates .x1; : : : ; x4/0. Also shown
are the convex hulls of the intersection of external estimates (as a red line, Figs. 4.9
and 4.11) and the union of internal estimates (as a blue line in Fig. 4.10 and dashed
line in Fig. 4.11). Here internal ellipsoids are in green.

Indicated here are two two-dimensional projections of the reach tube for the
system of the above (external and internal, Figs. 4.12 and coinciding 4.13).

Backward Reachability Sets and Control Synthesis: Aiming Methods

We are now passing to the calculation of control strategies. Our task in the simplified
coordinates (from z to x D G.t; ª/z) will be to transfer system (4.19) from given
position ft0; xg to the final one m 2 M within prescribed time ª � t0. As we have
seen in Sects. 2.6 and 3.11, the task will be solvable iff x 2 W Œt0�, where W Œt0� D
W .t0; ª; M / is the backward reachability set from target set M .
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Fig. 4.9 N D 15; Dim D
4; fx1; x2g. External convex
hull and internals

Fig. 4.10 N D 15; DIM D
4; fx1; x2g. Internals with
their convex hull
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Fig. 4.11 N D 15; Dim D
4; fx1; x2g. External and
internal convex hulls

Fig. 4.12 N D 15; Dim D
4; fx1; x3g. Projection of
reach tube—coordinates of
motion
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Fig. 4.13 N D 15; Dim D
4; fx2; x4g. Projection of
reach tube—velocities of
motion

We therefore have a problem in the next form: find feedback control strategy
u D U.t; x/ which ensures the following conditions

� Px.t/ D B.t/u.t/; t 2 Œt0; ª�;

x.t/ 2 Rn; x.ª/ 2 E.m; M/; u.t/ 2 E.q.t/; Q.t//;
(4.20)

whatever be the starting position ft0; xg; x 2 W Œt0�.
To find the feedback solution strategies we will apply the aiming methods

described in Sects. 2.6 and 3.11. For calculating the solution we will substitute W Œt �

by its tight internal ellipsoidal approximation E�Œt � D E.w?.t/; W�Œt �/. Then, as
indicated in Sect. 3.11, the synthesizing feedback control u D U.t; x/ has the next
form .q.t/ 2 E.q.t/; Q.t///

U.t; x/ D
(

q.t/; if x 2 E�Œt �,

q.t/ � Q.t/B 0.t/l0hB 0.t/l0; Q.t/B 0.t/l0i� 1
2 ; if x … E�Œt �.

(4.21)

Here the unit vector l0 D .x.t/ � s0/=kx.t/ � s0k, where

s0 D argminfkx � sk W s 2 E�Œt �; x D x.t/g

so that l0 is the gradient of the distance function d.x; E�Œt �/ with t fixed and s0 is
the nearest point of E�Œt � from x 62 E�Œt �.
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Aiming method (a). As indicated in Sect. 3.11 (T=I) vector s0 D .Q C
œE/�1Q.z � q/ C q for E�Œt � D E.q.t/; Q.t// may be found from equation
h.œ/ D 0, where

h.œ/ D h.Q C œE/�1Q.z � q/; .Q C œE/�1.z � q/i � 1:

and œ > 0 is its only positive root (prove that).
Here the bottleneck is to find a proper E�Œt � among such internal ellipsoids which

would actually be the closest to x.
A second option—aiming method (b)—is to calculate the distance function in

the metric generated by E.0; Q/, namely,

s0 D argminfkx � skQ�1 W s 2 E�Œt �; x D x.t/g:

Then s0 will lie on the line that connects point x and w?, hence

l0 D .x � w?/=kx � w?k:

The final formula will then be as follows

U.t; x/ D

8̂
<
:̂

q.t/; if x 2 E�Œt �,

q.t/ � Q.t/B 0.t/l0

hB 0.t/l0; Q.t/B 0.t/l0i 1
2

; if x … E�Œt �. (4.22)

Such are the two approaches to the calculation of l0.
In the second approach one may use several internal ellipsoids Ek�Œt � since they

all have a common center w?.t/ for each t . The solution formula is as follows

U.t; x/ D

8̂
<̂
ˆ̂:

q.t/; if x 2 S
k

Ek�Œt �,

q.t/ � Q.t/B 0.t/l0

hB 0.t/l0; Q.t/B 0.t/l0i 1
2

; if x … S
k

Ek�Œt �.
(4.23)

In the calculation of reachability sets for phase coordinates x of large dimensions
and controls of small dimensions the internal ellipsoids Ek�Œt � may turn out to be
degenerate. A separate treatment of such situations is given below, in Sect. 4.4.3.

For the two-dimensional system

Px1 D x2; Px2 D u C 1; M D E.m; M/; m D .1; 1/0; M D 1

2
I; juj � 1;

indicated here are the projections of the backward reach set W Œ£� for £ D 0; ª D 3

(Figs. 4.14, 4.15, 4.16, 4.17, 4.18, 4.19, 4.20, 4.21, and 4.22).
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Fig. 4.14 N D 5; DIM D 2. Backward reach set—internal and external estimates

Fig. 4.15 N D 5; DIM D 2. Backward reach set—internal estimates and their convex hull
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Fig. 4.16 N D 30; DIM D 2. Backward reach set—internal and external estimates

Fig. 4.17 N D 30; DIM D 2. Backward reach set—internal estimates and their convex hull
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Fig. 4.18 N D 5; Dim D 2. Backward reach tube—internal and external estimates

Fig. 4.19 N D 15; DIM D 2. Backward reach tube—coinciding internal and external estimates
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Fig. 4.20 N D 5; Dim D 2.
Closed-loop chattering
control—aiming method (b)
in the ellipsoidal norm

Fig. 4.21 N D 15;

Dim D 2. Closed-loop
chattering control—aiming
in the Euclidean norm
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Fig. 4.22 N D 15;

DIM D 2. Continuous
closed-loop target control

Indicated further is the closed-loop controlled trajectory that reaches target M
with aiming in the Euclidean metric (a) and in the metric of the approximating
ellipsoid (b).

Aiming Method (c) for Continuous Control

In the previous figures the controls are of chattering type, ensuring sliding-type
regimes when the trajectory fluctuates along the boundary of the backward reach set
W Œt �. However, one may introduce a solution with continuous control, when having
started from inside W Œ£� the trajectory does not reach the boundary of W Œt �; t > £.
Such control is constructed as follows (T D W �1� .t/)

U �
e .t; x/ D

8<
:

q.t/; if hx � w?.t/; W �1� .t/.x � w?.t//i � 1;

otherwise
q.t/ � QB 0.t/.x � w?.t//kQ1=2B 0.t/.x � w?.t//k�1:
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4.3 Damping Oscillations

4.3.1 Calming Down a Chain of Springs in Finite Time

Given is a vertical chain of a finite number n of suspended springs subjected to a
vertical control force applied to the lower end of the chain. The chain also includes
loads of given mass attached in between the springs at their lower ends and the
masses of the springs are taken to be negligible relative to the loads. The upper end
of the chain is rigidly fixed to a suspension (see Fig. 4.23).

The oscillations of the chain are then described by the following system of
second-order ODEs (i D 2; : : : ; j � 1; j C 1; : : : ; n � 1):

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

m1 Rw1 D k2.w2 � w1/ � k1w1;

: : :

mi Rwi D kiC1.wiC1 � wi / � ki .wi � wi�1/;

: : :

mj Rwj D kj C1.wj C1 � wj / � kj .wj � wj �1/ C uj .t/;

: : :

mn Rwn D �kn.wn � wn�1/

(4.24)

with t > t0 D 0. Here n is the number of springs as numbered from top to bottom.
The loads are numbered similarly, so that the i -th load is attached to the lower end
of the i -th spring; wi is the displacement of the i -th load from the equilibrium, mi is

Fig. 4.23 An oscillating
system
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the mass of the i -th load, ki is the stiffness coefficient of the i -th spring. The gravity
force enters (4.24) implicitly, through the lengths of the springs at the equilibrium.

The initial state of the chain at time t0 D 0 is given by the displacements w0
i and

the velocities of the loads Pw0
i , with

wi .t0/ D w0
i ; Pwi .t0/ D Pw0

i ; i D 1; : : : ; n:

The control u D uj .t/ in this equation is indicated at the j-th load (which may
be j D n) with its values confined to the interval Q D Œumin; umax�. In particular,
this constraint may be symmetric: Q D Œ��; �� or one-sided: directed only down
(Q D Œ0; ��) or only up (Q D Œ��; 0�).

We now rewrite system (4.24) in normal matrix form introducing the extended
vector x 2 R2n such that .x1; : : : ; xn/0 D w; .xnC1; : : : ; x2n/0 D Pw. Then

Px.t/ D Ax.t/ C b.j /uj .t/; x.t0/ D x0 D
�

w0

Pw0

�
(4.25)

A D
�

0 I

�M �1K 0

�
; b.j /0 D .0; : : : ; 0; b

.j /
nCj ; 0; : : : ; 0/; b

.j /
nCj D m�1

j ;

M D

0
B@

m1

: : :

mn

1
CA ;

K D

0
BBBBB@

k1 C k2 �k2

�k2 k2 C k3 �k3

: : :
: : :

: : :
: : : : : :

�kn�1 kn�1 C kn �kn

�kn kn

1
CCCCCA

:

If the controls are applied at several loads j1; : : : ; jk , then vector b.j / in 4.25
has to be substituted by matrix B D .b.j1/; : : : ; b.jk// and the control will be
k-dimensional: u0 D .uj1.t/; : : : ; ujk

.t//:

Exercise 4.3.1. (i) Prove that system (4.25) is controllable if j D 1 or j D n.
(ii) Is the system controllable for any j 6D 1 and j 6D n‹:

(iii) Find the necessary and sufficient conditions for controllability of sys-
tem (4.25), when mi � m; ki � k (m, k are the same for all i D 1; : : : ; n).
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Examples of Solutions Through Ellipsoidal Methods

The emphasis of this book is not only to describe exact solutions but also to indicate
effective numerical methods. Based on ellipsoidal approximations such methods
rely on specially derived ordinary differential equations, indicated above in Chap. 3.
We now present some examples of feedback control for a chain of springs. These
are solved by schemes explained in Sect. 3.11.

Example 4.2. Chain of four springs with four loads with control at each load
Indicated are projections of the backward reachability set for system (4.24) with

four springs and four loads of different masses fmi g D f3; 1; 1:5; 5g and different
coefficients of stiffness fki g D f2; 1; 4; 1g.

We assume target set M D E.0; M/; M D 0:1I and the control in (4.25) to be
four-dimensional: Bu D fb.5/u1; : : : ; b.8/u4g (applied to each load),

u 2 E.0; Q/; Q D

0
BB@

1 1 0 0

1 2 0 0

0 0 2 0

0 0 0 1

1
CCA :

The phase space for our system is of dimension 8, with unit orths of from
e0

1 D .1; 0; : : : ; 0/ 2 R 8 to e0
8 D .0; : : : ; 0; 1/ 2 R 8: Our aim is to calculate

the solvability set (backward reach set) W Œt � D W .t; ª; M / with ª D 3, seeking
for the projections of eight-dimensional W Œt � on two-dimensional planes fw5; w6g
and fw7; w8g of system velocities. To find these projections we need the related
external and internal ellipsoidal approximations that are calculated for good curves
l.t/ along which they would be tight. The boundary conditions l D l.ª/ for such
curves are taken along a partition of unit circles on the planes e5; e6 and e7; e8 for
the velocities. The evolution of these projections in time will reflect the dynamics of
tube W Œt �. The result of intersecting approximating ellipsoids is given in Figs. 4.24,
4.25, 4.26, and 4.27. �

Example 4.3. Target control trajectories for chain of four springs with four loads:
Control at each load

Indicated are the target controlled trajectories with four springs and four loads
of different masses fmi g D f5; 2; 4; 1g and different coefficients of rigidity fki g D
f2; 1; 1:5; 3g; taking M D E.0; 0:1I /: The aiming is done within scheme (b) of
Sect. 3.11, in the metric of internal ellipsoids. The results are illustrated in Figs. 4.28,
4.29, 4.30, and 4.31 with boundary of target set in blue.

Example 4.4. Oscillating springs with two loads. Considered is a system with two
loads and control applied to one of them.
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Fig. 4.24 Dim D 8. External approximations of backward reach set—coordinates x5; x6

Fig. 4.25 Dim D 8. External approximations of backward reach set—coordinates x7; x8
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Fig. 4.26 Dim D 8. Internal approximations of backward reach set—coordinates x5; x6

Fig. 4.27 Dim D 8. Internal approximations of backward reach set—coordinates x7; x8
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Fig. 4.28 Dim D 8: Projection of phase trajectory—position coordinates x1; x2

Fig. 4.29 Dim D 8: Projection of phase trajectory—position coordinates x3; x4
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Fig. 4.30 Dim D 8:

Projection of phase trajectory:
velocities x5; x6

Fig. 4.31 Dim D 8:

Projection of phase trajectory:
velocities x7; x8

Calculated are:

– projections of approximations of backward reach set at final time by arrays of
ellipsoids (their boundaries are marked blue for externals and green for internals;
an accurate approximation through many ellipsoids indicates that the result is
seen as almost the same).

– solutions to the problem of ellipsoidal control synthesis with pictures showing
starting set is in green and boundary of target set in red.

(i) Two loads. Control at upper load.

Here, in system (4.24), the number of loads is N D 2, m1 D 2; m2 D 2, k1 D 1:3,
k2 D 2, w 2 R2, t0 D 0; t1 D 7. The control force u 2 Œ�1; 1� is applied only to
the upper load. In system (4.25) x 2 R4: The approximated backward reach tube,
as calculated in backward variables Nt D 7 � t; t 2 Œ0; 7�; emanates at time Nt D 0;
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Fig. 4.32 Dim 4: Projections of approximation of backward reach set with control at upper load
on two-dimensional planes in axes (position, velocity) for each load

.t D 7/; from target set M —a ball of radius 0:01 centered at 0, and terminates at
t D 0; T D Nt D 7: Reach sets at shown in backward time at T D 7.t D 0/, see
Fig. 4.32.

The controlled trajectory evolves from starting set X 0, centered at point x.0/ D
x0 D Œ0:5688; 1:0900; 0:8921; 0:2423�0 to target set M —a ball of radius 0:1

centered at m D 0. It is shown in Figs. 4.33 and 4.34. �

(ii) Two loads. Control at lower load.

The system in same as in (i), but control is applied only at lower load.
The approximation of backward reach set is calculated as in previous case (i),

within the same time interval, but with changed location of control. It is shown at
final time in Fig. 4.35.

The starting set is centered at x0 D Œ1:4944; 1:9014; 0:2686; 1:2829�T and
terminal set is the same as in (i), see Figs. 4.36 and 4.37.

Example 4.5. Oscillating springs with four loads. Considered is a system with four
loads and control applied to only one of them.

Calculated are:

– projections of backward reach set at final time (their boundaries are marked blue
for externals and green for internals; an accurate solution indicates that they are
seen as almost the same).

– solutions to the problem of ellipsoidal control synthesis with pictures showing
starting set is in green and boundary of target set in red.

Control Applied at First (Upper) Load

Here, in system (4.24), the number of loads is N D 4, m1 D 1:5; m2 D
2; m3 D 1:1; m4 D 4, k1 D 3; k2 D 1:4; k3 D 2:1; k4 D 1, w 2 R4,
t0 D 0; t1 D 10. The control force u 2 Œ�1; 1� is applied only to the upper load. In
system (4.25) x 2 R8: The backward reach tube, as calculated in backward variables
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Fig. 4.33 Dim 4: The target controlled trajectories for system of two loads with control at upper
load

Nt D 10 � t; t 2 Œ0; 10�; emanates at time Nt D 0; .t D 10/; from target set M —a
ball of radius 0:01 centered at 0, and terminates at t D 0; T D 10: The projections
of these reach sets at shown in backward time at T D 10.t D 0/, see Fig. 4.38.

The controlled trajectory evolves from starting set X 0, centered at point x.0/ D
x0 D Œ�1:3691I 0:4844I 0:8367I �0:0432I 1:6817I 0:5451I �1:9908I 0:2277�0 to tar-
get set M —a ball of radius 0:1 centered at m D 0. It is shown in Figs. 4.39 and 4.40.

Control Applied at Fourth (Lowest) Load

Here the problem parameters are the same as with control at first (upper) load except
that now it is applied to the fourth (lowest ) load.

Projections of the reach set are shown in Fig. 4.41. The controlled trajectory now
evolves from starting set X 0, centered at point

x.0/ D x0

D Œ�0:6296I �1:9940I �2:6702I �3:6450I �0:1013I �0:1054I �0:2913I �0:6383�0

to the same target set M —a ball of radius 0:1 centered at f0g. It is depicted in
Figs. 4.42 and 4.43.
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Fig. 4.34 Dim 4: Projections of phase trajectories of target controlled system with control at upper
load

In order to calculate exact solutions to our control problems one needs to heavily
rely on calculating fundamental matrix G.t; s/: Their calculation may also occur in
other elements of the solution process. The calculation of such matrices for large
dimensions is a special direction in numerical methods (see [89,90,92]). In the next
lines we indicate an algorithmic method applicable to differential equations for the
chain of springs.
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Fig. 4.35 Projections of approximation of backward reach set with control at lower load on two-
dimensional planes in axes (position, velocity) for each load

Fig. 4.36 The target controlled trajectories for system of two loads with control at lower load

Computing the Fundamental Matrix

For stationary systems matrix function G.t; s/ D exp A.t � s/ which is a matrix
exponent. Consider calculation of such an exponent X.t/ D eAt , assuming

A D
�

0 I

�M �1A0 0

�
;



4.3 Damping Oscillations 179

Fig. 4.37 Dim 4: Projections of phase trajectories of target controlled system with control at lower
load

where matrix M is diagonal and matrix A0 is symmetric and tri-diagonal (nonzero
elements are allowed only on the main diagonal and those directly above and under).

Consider the powers of A. Having observed

A2 D
��M �1A0 0

0 �M �1A0

�
;
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Fig. 4.38 Projections of approximation of backward reach set with control at first (upper) load on
two-dimensional planes in axes (position, velocity) for each load

we further obtain

A2k D
�

.�1/k.M �1A0/k 0

0 .�1/k.M �1A0/k

�
;

A2kC1 D
�

0 .�1/k.M �1A0/k

.�1/kC1.M �1A0/kC1 0

�
:

Introducing new matrix L D .M � 1
2 A0M � 1

2 /, we have

A2k D
 

.�1/kM � 1
2 L2kM

1
2 0

0 .�1/kM � 1
2 L2kM

1
2

!
;

A2kC1 D
 

0 .�1/kM � 1
2 L2kC1L�1M

1
2

.�1/kC1M � 1
2 L2kC1LM

1
2 0

!
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Fig. 4.39 The target controlled trajectories for system of four loads with control at first (upper)
load

and further on

eAt D
1X

kD0

1

kŠ
.At/k D

D
 

M � 1
2 0

0 M � 1
2

!�
cos.Lt/ sin.Lt/L�1

� sin.Lt/L cos.Lt/

� 
M

1
2 0

0 M
1
2

!
: (4.26)

The algorithm for calculating eAt is as follows:

1. Calculate symmetric matrix L2 D M � 1
2 A0M � 1

2 .
2. Calculate singular decomposition for matrix L2 D UKV T , where matrices U , V

are orthogonal (here U D V due to symmetry of L2) and K is diagonal. Since L2

is a tri-diagonal matrix, one may use special algorithms effective for this specific
class of matrices (with complexity of order N log3 N ).

3. Calculate matrix K
1
2 .

4. For each instant t calculate diagonal matrices sin.tK
1
2 /, cos.tK

1
2 /.

5. Calculate matrix cos.tL/ D U cos.tK
1
2 /V T , sin.tL/ D U sin.tK

1
2 /V T .

6. Calculate eAt using formula (4.26).
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Fig. 4.40 Projections of phase trajectories of target controlled system with control at first (upper)
load

The presented algorithm relies on the special structure of matrix A and proves to
be far more effective than the general algorithms that do not rely on such structure.
A simulation experiment indicates an eight-times more effective performance of the
structure related algorithm as compared to the “ordinary” one.

4.4 Computation in High-Dimensional Systems. Degeneracy
and Regularization2

4.4.1 Computation: The Problem of Degeneracy

As we have observed, the basic problem treated here is how to calculate ellipsoidal
estimates for reachability tubes of a control system. Its solution is a crucial element
for calculating feedback target control U.t; x/ that steers the system trajectory from

2This section follows paper [58].
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Fig. 4.41 Projections of approximations of backward reach set with control at fourth (lowest) load
on two-dimensional plane in axes (position, velocity) for each load

given position ft0; X 0g to given target set M . Namely, as indicated in Sect. 2.6, to
apply the aiming rule, one needs to calculate the backward reachability (solvability)
tube W Œt � for the investigated system. For linear-convex systems of type (3.1) this
is done through ellipsoidal methods of Sect. 3.11 which proved successful for many
problems. This route is especially useful for systems of higher dimensions where
finding set W Œt � directly is computationally too cumbersome. Thus we use its
internal ellipsoidal approximations. Here we require that constraints in the problem
are ellipsoidal: X 0 D E.x0; X0/, Q .t/ D E.q.t/; Q.t//. Otherwise sets Q .t/ have
to be approximated by their internal or external ellipsoids. Functions q.t/, Q.t/ for
the constraints are assumed to be continuous.

With W Œt � given, the desired control strategy U D U �
e .t; x/ is given

by (3.136), (3.137). Following Sects. 3.9, 3.11, and (3.123), we observe that the
internal ellipsoids are generated by the following ODEs:

Pw?.t/ D A.t/w?.t/ C B.t/q.t/ (4.27)
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Fig. 4.42 The target controlled trajectories for system of four loads with control at fourth (lowest)
load

with initial condition w?.t0/ D m, and

PW�.t/ D A.t/W�.t/ C W�.t/A0.t/�

� ŒH0.t/W�.t/ C W�.t/H.t/�; (4.28)

H.t/ D W � 1
2� .t/S.t/Q

1
2

B.t/;

with boundary condition W�.t1/ D M: Here S.t/ is a parameterizing orthogonal

matrix such that vectors S.t/Q
1
2

Bl.t/ and M
1
2 l.t/ are collinear and column l.t/ is a

“good” curve—the solution to equation

dl.t/

dt
D �A0.t/l.t/; l.t0/ D l:

Ellipsoidal approximations Ew�Œt � D E.w?.t/; W�.t// are “tight” in the sense that
they touch the exact reachability set in the direction of vector l.t/:

¡.l.t/ j Ew�Œt �/ D ¡.l.t/ j X Œt �/:

The computation of external estimates is less difficult than of the internals which
are therefore less investigated. However, the internals are crucial for designing
feedback controls, so these difficulties, which increase with dimension, have to be
coped with. We therefore concentrate on internals.
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Fig. 4.43 Projections of phase trajectories of target controlled system with control at fourth
(lowest) load

An attempt to apply established approximation formulas from [182] to oscillating
systems of high dimensions [58] with scalar control (nu D 1) revealed that the
configuration matrix W�Œt � of ellipsoid Ew�Œt � is ill-conditioned (namely, n � 1 out
of n existing semi-axes of Ew�Œt � are of length close to zero). This raises a serious
issue for computations for the following reasons:

(a) errors caused by numerical integration of approximating ODEs may cause
matrix W�Œt � to have negative eigenvalues, which is unacceptable;

(b) the only information provided by a degenerate ellipsoid with a single positive
axis is the value of support function in the direction of that axis. However, this
value may be obtained by simpler calculations (not involving the solution of a
matrix ODE).

We indicate some means of coping with these difficulties. For case (a) this
will be to regularize the original procedures of Sect. 3.9. The idea is to calculate
a set of ellipsoidal approximations which are then being “mixed” throughout the
process. For case (b) the issue is that high-dimension systems require a polynomially
increasing computational burden. This is met by introducing a new efficient method
for calculating matrices S.t/.
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Finally in this section we discuss a parallelized software implementation of the
presented formulas. The given algorithms have proved to be effective for systems of
ODEs of dimension up to 500.

4.4.2 Regularizing the Ellipsoidal Estimates

Numerical experiments with internal ellipsoidal estimates of the reachability tube
for a high-order oscillating system of the (4.24) type (see [58]) with a scalar control
lead to the following conclusion. If the terminal set M has small diameter, then
the internal ellipsoidal estimates of the reach tube are close to degenerate. Namely,
as time t increases, only one eigenvalue of matrix W�.t/ grows. Other eigenvalues
remain close to those of matrix M .

We start this section by demonstrating the cause of such degeneracy. To do this,
we analyze the formula for the internal ellipsoidal estimate of the geometrical sum
of two ellipsoids. After that we indicate how one copes with this degeneracy by
weakening the requirements on the tightness of estimates. Finally we extend this
approach to calculating the internal estimates of the reachability tube.

Degeneracy of the Sum of Degenerate Ellipsoids

Recall from Sect. 3.7 that the formula for an internal ellipsoidal estimate of the
geometrical sum of m ellipsoids E.qi ; Qi /, i D 1; : : : ; m, tight in direction ` 2 R

n:

E.q1; Q1/ C � � � C E.qm; Qm/ 
 E.q; Q/; (4.29)

q D
mX

iD1

qi ; Q D QŒm�0QŒm�; QŒm� D Q
1
2

1 C S2Q
1
2

2 C � � � C SmQ
1
2
m;

where Si are orthogonal matrices satisfying condition:

Q
1
2

1 ` is collinear with Sj Q
1
2

j `; j D 2; : : : ; m. If any of the matrices Qi ; i D
1; : : : m; is degenerate, relation (4.29) makes sense for directions ` such that Qi ` ¤
0, for all i D 1; : : : ; m.

Theorem 4.4.1. Suppose rankQi D ri and Qi ` ¤ 0, i D 1; : : : ; m. Then the rank
of matrix Q D QŒm�0QŒm� is limited by r1 C � � � C rm � .m � 1/.

Proof. Denote column spaces of matrices Q
1
2

1 and Si Q
1
2

i as L1 and Li , respectively,
i D 2; : : : ; m. Then the range imQ 	 Pm

iD1 Li . By definition of matrices Si the

nonzero vector l .1/ D Q
1
2

1 ` belongs to all subspaces Li . Therefore the total number
of linearly independent vectors in the image imQ cannot be greater than r1 C
.r2 � 1/ C � � � C .rm � 1/. ut
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Corollary 4.4.1. The set of rank 1 matrices is closed with respect to opera-
tion (4.29).

This means a collection Q of matrices of rank 1, made according to (4.29), is also
of rank 1.

Remark 4.4.1. The degeneracy of estimates is the result of their tightness (the
requirement that they touch the exact set). This is not a property of the particular
formula (4.29). Indeed, if rankQi D 1, then the summed ellipsoids may be
presented as Ei D E.qi ; Qi / D convfqi ˙ ai g, where vectors ai are the only
nonzero semi-axes of these ellipsoids. Then the exact sum E1 C � � � C Em will be a
polyhedron convfq1 C � � � C qm ˙ a1 ˙ � � � ˙ amg. And for almost all directions `

the only tight approximation will be one of the diagonals of this polyhedron. In this
case formula (4.29) describes exactly those diagonals.

Remark 4.4.2. For some choices of orthogonal matrix S the dimension of the inter-
nal ellipsoidal estimate may be strictly less than the dimension of ellipsoids being
added. For example, if Q1 D Q2 D I , ` D l .1/, S D diagf1; �1; �1; : : : ; �1g,
then (4.29) gives Q D diagf1; 0; 0; : : : ; 0g.

Regularizing the Estimate for the Sum of Degenerate Ellipsoids

Applying results of the above to systems of type (4.27), (4.28), we indicate how
several degenerate estimates may be combined (mixed) to get an estimate of higher
dimension. This approach is based on the formula for internal ellipsoidal estimates
of the convex hull for the union of ellipsoids [174].

Lemma 4.4.1. If ellipsoids Ew
i D E.w; W .i/� /, i D 1; : : : ; m, are internal estimates

of a convex set X , then ellipsoid

Ew
’ D E.w; W ’/; W ’� D

mX
iD1

’i W
.i/� ; ’i � 0;

mX
iD1

’i D 1; (4.30)

will also be an internal estimate of X .

Proof. Since
p

t is concave, we have

¡.` j Ew
’ / D hw; `i C

 
mX

iD1

’i h`; W .i/� `i
! 1

2

(4.31)

mX
iD1

’i .hqi ; `i C h`; W .i/� `i 1
2 / � max

iD1;:::;m
¡.` j Ew�i/;
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hence

Ew
’ 	 conv

m[
iD1

Ew
i 	 X :

ut
Theorem 4.4.2. Suppose w D 0 and the dimension of L (the linear hull of Ew

i ) is r .
Then if ’i > 0, i D 1; : : : ; m, the following equality holds: the image of mapping
W ’� is imW’ D L . In particular, the matrix W ’� is of rank r .

Proof. This theorem means that

im.’1W .1/� C � � � C ’mW .m/� / D imW .1/� C � � � C imW .m/� :

Due to the symmetricity of matrices W .i/� , the latter is equivalent in terms of matrix
kernels to

ker.’1W .1/� C � � � C ’mW .m/� / D ker W .1/� \ � � � \ ker W .m/� :

The inclusion of the right-hand side into the left is obvious. On the other hand, if

x 2 ker.’1W .1/� C � � � C ’mW .m/� /;

then taking the inner product of equality ’1W .1/� C � � � C ’mW .m/� D 0 by x, on both
sides, we get

’1hx; W .1/� xi C � � � C ’mhx; W .m/� xi D 0:

Since matrices W .1/� are non-negative definite and ’i is positive, we observe that
hx; W .i/� xi D 0. Hence x 2 ker W .1/� . ut

Note some properties of estimates Ew
’ :

1. Suppose ellipsoidal approximation Ew
1 is tight in direction `, i.e. ¡.` j Ew

1 / D
¡.` j X /. Let us now estimate the difference between its support function and
that of ellipsoid Ew

’ in the same direction. After some calculation we have:

¡.` j Ew
’ / � hw; `i C ’1h`; W .1/� `i 1

2

D hw; `i C h`; W .1/� `i 1
2

p
1 � .1 � ’1/ D

D ¡.` j X / � 1

2
.1 � ’1/h`; W .1/� `i 1

2 C O..1 � ’1/2/:
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Fig. 4.44 Internal ellipsoidal
approximations of sum of two
ellipsoids

Therefore, the closer ’1 is to 1, the closer are ellipsoids Ew
’ to the tight internal

ellipsoid along direction `.
2. If all the ellipsoids Ew

i , i D 1; : : : ; m, are tight approximations of X along the
same direction `, then in (4.31) an equality is true and ellipsoid Ew

’ is also a tight
approximation of X along `.

Example 4.6. Figure 4.44 shows ellipsoidal estimates of the sum of two degenerate
ellipsoids. Original ellipsoids Ei are two line segments (thick dotted line), and their
sum is a parallelogram (thin dotted line). Due to Theorem 4.4.1 tight approximations
of the sum are also degenerate ellipsoids (line segments) shown by thick solid line.
Regularized approximations with ’1 D 1

10
; 1

2
; 9

10
are presented with thin solid lines.

These are non degenerate due to Theorem 4.4.2 and touch the parallelogram (note
that they are tight in direction of normals to the sides of the parallelogram, see
property 2). Besides that, for ’ D 1

10
and 9

10
thanks to property 1 the support

functions for the estimates are close to the support function of the parallelogram
along corresponding directions.

Figure 4.45 shows internal ellipsoidal approximations of solvability set, as
calculated by (4.31), for an oscillating system Px1 D x2, Px2 D �x1 C u on
time interval Œ0; �� with parameter ” D 1

20
(left) and 1

2
(right). Exact (tight)

approximations are degenerate ellipsoids (shown with thick lines).

4.4.3 Regularizing the Estimate for the Reachability Tube

We choose in (4.30) the following values of parameters ’:

’1 D 1 � ¢” C ¢”“i ; ’i D ¢”“i ; i D 2; : : : ; m;

where “i � 0 and
Pm

iD1 “i D 1; ” � 0.
Here ¢ is sufficiently small, ensuring ’1 > 0. Then

¢�1.W ’� � W .1/� / D ”

 
mX

iD1

“i W
.i/� � W .1/�

!
:
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Fig. 4.45 Internal ellipsoidal estimates of the reachability set of a 2D system (left: ” D 1
20

, right:
” D 1

2
)

We use this result to mix m ellipsoidal estimates of the reachability tube as follows:

PW .i/� D A.t/W .i/� C W .i/� A0.t/ � ŒH0.t/W .i/� C W .i/� H.t/�C

C”

0
@ mX

j D1

“ij W .j /� � W .i/�

1
A ; W .i/� .t1/ D M;

with H.t/ D .W .i/� .t//� 1
2 S.t/Q

1
2

B.t/.
Recall that Si .t/ are arbitrary orthogonal matrices such that vectors

Si .t/.B.t/Q.t/B 0.t// 1
2 li .t/ and .W .i/� .t//

1
2 li .t/ are directionally collinear. The

column vector functions li .t/ are solutions to related adjoint systems

dli .t/

dt
D �A0.t/li .t/; li .t0/ D `i :

Remark 4.4.3. Parameter ” � 0 controls the level of “mixed” approximations: the
higher is ”, the greater is the impact of mixing. Parameters “ij � 0 control the
configuration of the mixture (namely, which ellipsoids are being mixed).

Remark 4.4.4. The choice of identical coefficients “ij D O“j (in particular, “ij D 1
m

)
reduces the number of operations, since in this case the sum

Pm
j D1 “ij W .j /� .t/ DPm

j D1
O“j W .j /� .t/ does not depend on j and is calculated only once for each time

step.

Theorem 4.4.3. Suppose matrix-valued solutions W .i/� .t/ to Eq. (4.28) are extend-
able to interval Œt0; t1�, and are positive definite on this interval. Then the set-value
function

W�Œt � D conv
m[

iD1

Ew
i Œt � D conv

m[
iD1

E.w�.t/; W .i/� .t//
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satisfies for t 2 Œt0; t1� the funnel equation

lim
¢!0C ¢�1hC..I � ¢A.t//W�Œt � ¢�; W�Œt � � ¢E.0; QB.t// D 0 (4.32)

with boundary condition W�Œt1� 	 M D E.m; M/.

Without loss of generality consider q.t/ � 0; m D 0, and therefore,
w?.t/ � 0. Then, changing variables z.t/ D G.t0; t/x.t/, as in Sect. 1.1, we come
to system (4.25) with A.t/ � 0.

The support function of the reach set W�Œt � is

¡.` j W�Œt �/ D maxfh`; W .i/� .t/`i 1
2 j i D 1; : : : ; mg: (4.33)

Let ¢ > 0 be sufficiently small, such that for • 2 Œ0; ¢� the maximum for given
direction ` is achieved at same i D i0, i.e. ¡.` j W�Œt �/ D h`; W .i0/� .t/`i 1

2 :

Assuming k`k D 1, the estimate for the support function of W�Œt � ¢� is

¡.` j W�Œt � ¢�/ D h`; W .i0/� .t � ¢/`i 1
2 D

Ch`; W .i0/� .t/`i 1
2 � ¢

2
h`; W .i0/� .t/`i� 1

2 h`; PW .i0/� .t/`i 1
2 C o.¢/:

Omitting brackets .t/ in the notations, we further estimate, due to (4.4.3),

h`; PW .i0/� .t/`i D �h`; .W .i0/� /
1
2 SQ

1
2

B`i � h`; .W .i0/� /
1
2 SQ

1
2

B`iC

C”

0
@ mX

j D1

“i0j h`; W .j /� `i � h`; W .i0/� `i
1
A � �

�2k.W .i0/� /
1
2 `k kSkkQ

1
2

B`k � �2h`; W .i0/� `i 1
2 h`; QB`i 1

2 :

Here the multiplier of ” is non-positive, since for i D i0 the expression
h`; W .i/.t/`i; .i D i0/ is at its maximum. Returning to the estimate of
¡.` j W�Œt � ¢�/, we finally get

¡.` j W�Œt � ¢�/ � ¡.` j W�Œt �/ C ¢h`; QB.t/`i 1
2 D o.¢/;

which is equivalent to the funnel equation (4.32) of the above (A.t/ � 0).

Corollary 4.4.2. Set-valued function W�Œt � is an internal estimate of the reacha-
bility tube W Œt �, and functions W .i/� Œt � are internal ellipsoidal estimates of W Œt �.

This follows from the fact that the solvability set W Œt � is the maximum solution to
funnel equation (4.32) with respect to inclusion.
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Fig. 4.46 The size of ellipsoidal estimates depending on the number of mixed estimates m (top:
eigenvalues, bottom: volume in the power 1

n
)

Exercise 4.4.1. Prove formula (4.33).

Example 4.7. Figure 4.45 shows internal ellipsoidal estimates of the reachability
set of an oscillating system Px1 D x2, Px2 D �x1 C u; within time interval Œ0; �� with
” D 1

20
and 1

2
. Here exact approximations are degenerate ellipsoids (shown with

thick lines).

Exercise 4.4.2. Figure 4.46 demonstrates the dependence of the size of ellipsoidal
estimates for a higher-order oscillating system on the system dimension (number
of nodes N D 10, dimension n D 2N D 20). Shown on the top are 20 graphs of
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all eigenvalues of the matrix .W .1/� /
1
2 (these eigenvalues are the sizes of semi-axes

of the estimates). On the bottom is the volume of the estimates plotted in power
1
n

D 1
20

(the geometrical mean of the axes).
Analyzing similar plots for a number of values of N , one may conclude that for

robust computation of the reachability tube the number of approximations m should
be chosen close to the system dimension n.

4.4.4 Efficient Computation of Orthogonal Matrix S

Equation (4.28) for the ellipsoidal approximation includes the operation of finding
an orthogonal matrix S D S.v1; v2/ 2 Rn�n, such that Sv2 is collinear with v1 for
some nonzero vectors v1; v2 2 Rn.

Note that with n � 2 the matrix S.v1; v2/ is not unique (for n D 2 there are at
least two such matrices, while for n � 3 there are infinitely many).

Function S.v1; v2/ should be defined as sufficiently smooth in variables v1; v2, so
that integration schemes for higher-order ODEs could be applied to (4.28).

Matrix S.v1; v2/ may be calculated, for example, by computing the singular value
decomposition of vectors v1; v2 and by multiplying the corresponding orthogonal
matrices [132]. The computational burden for this procedure is of order O.n3/, and
continuous dependence of S on v1; v2 is not guaranteed.

The following theorem gives explicit formulas for calculating S.v1; v2/, which
relax the burden to O.n2/ operations and also ensure S to be sufficiently smooth.

Theorem 4.4.4. Take some nonzero vectors v1; v2 2 Rn. Then matrix S 2 Rn�n

calculated as

S D I C Q1.S � I /QT
1 ; (4.34)

S D
�

c s

�s c
;

�
; c D hOv1; Ov2i; s D

p
1 � c2; Ovi D vi

kvi k ; (4.35)

Q1 D Œq1; q2� 2 Rn�2; (4.36)

q1 D Ov1; q2 D
�

s�1.Ov2 � c Ov1/; s ¤ 0;

0; s D 0

is orthogonal and satisfies the property of collinearity for Sv2 and v1.

Proof. Suppose v1; v2 are not collinear and pass to their normalized versions Ovi D
vi kvi k�1. Denote Lv D L.v1; v2/ to be the plane generated by vectors v1 and v2.
We shall describe an orthogonal transformation S which is a rotation in the plane
Lv that transforms Ov2 into Ov1. We also impose an additional requirement on the
orthogonal complement L?

v to Lv which is that the induced operator S?
v will be

equal to identity.
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Compose matrix V D ŒOv1; Ov2� and find its decomposition: V D QR, where
matrix Q 2 Rn�n is orthogonal and matrix R 2 Rn�2 is upper triangular. Matrices
Q and R may be written in block form as

Q D ŒQ1; Q2�; Q1 2 Rn�2; Q2 2 Rn�.n�2/;

R D



R1

O.n�2/�2

�
; R1 D

�
1 c

0 s

�
:

Note that the columns of Q1 and Q2 form orthonormal bases in plane Lv and its
orthogonal complement L?

v , respectively. With an additional constraint R11 > 0,
R22 > 0 matrix Q1 is unique, while matrix Q2 may be arbitrary, with orthonormal
columns orthogonal to those of Q1. The indicated relations may be regarded as the
Gram—Schmidt orthogonalization procedure for finding matrix Q1.

Set

S D Q



S O

O I

�
Q0:

This matrix is orthogonal as the product of orthogonal matrices. It describes the
composition of three transformations: a rotation of plane Lv to plane L.e1; e2/, a
rotation in that plane, and a return to original coordinates.

We now prove that S does not depend on Q2. Indeed, S D Q1SQ0
1 CQ2Q0

2. But
from the equality QQ0 D Q1Q0

1 C Q2Q0
2 D I it follows that Q2Q0

2 D I � Q1Q0
1,

so we get relation (4.34), which does not contain Q2.
Matrix S is also orthogonal when v1 is collinear with v2, i.e. s D 0. In this case

c D ˙1 where for c D 1 we have S D I and for c D �1 we get S D I � 2Ov1 Ov0
1,

and check that SS 0 D I .
Now calculate S Ov2. From (4.36) we get Q0

1 Ov2 D .c; s/0 for any value of s. We
further have

S Ov2 D Ov2 C Q1

�
c � 1 s

�s c � 1

��
c

s

�
D

Ov2 C ŒOv1; s�1.Ov2 � c Ov1/�

�
1 � c

�s

�
D Ov1:

For any vector v ? Ov1; Ov2 we have Q0
1v D 0, hence Sv D v. ut

Remark 4.4.5. The computational complexity in using (4.34)–(4.36) is of order
O.n2/. Moreover, the multiplication by matrix S is now performed with O.n2/

operations instead of the usual O.n3/.
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Remark 4.4.6. It may be checked directly that for nonzero vectors v1; v2 function
S D S.v1; v2/ has continuous derivatives of any order everywhere except the cone
generated by collinear v1; v2.

4.4.5 Parallel Computation

Here we discuss the application of parallel computations to the computation of
internal ellipsoidal estimates and their application to finding feedback controls.

Computing the Ellipsoidal Estimates

In order to solve the ODE (4.4.3) numerically, using � parallel processes, we
decompose the index set I D fi D 1; : : : ; mg into � disjoint subsets Ik , such
that I D I1 [ : : : [ I�. Process k will calculate and store matrices W .i/� , i 2
Ik . (To balance the load between the processes the cardinalities of Ik should be
approximately identical, namely, of order m=�.)

Direct integration of ODE (4.4.3) would lead to an excessive amount of data
exchange between processes for computing the term

Pm
iD1 “ij W .j /� . To avoid

this, we combine (4.4.3) with (4.30). As a result each process solves its own
ODE (4.4.3) with the above term replaced by

P
i2Ik

“ij W .j /� , where
P

j 2Ik
“ij D 1.

Approximations from different processes are mixed at prescribed discrete times by
applying formula (4.30) with ’i D 1

m
. As a result the amount of data exchange is

reduced substantially.

Computing the Feedback Controls

For the feedback problem the exact “extremal aiming” control should be
calculated as

Ue.t; x/ D
(

�Q.t/B 0.t/lhl; QB.t/li� 1
2 if B 0.t/l ¤ 0I

E.q.t/; Q.t//; if B 0.t/l D 0;

where vector l D l.t; x/ D @V �=@x, V �.t; x/ D d.G.t1; t/x; G.t1; t/W�Œt �/

indicates the shortest path from x to W�Œt �. Here set W�Œt � is the convex hull of a
union of sets. So the calculation of vector l reduces to a computationally difficult
problem of the max-min type, namely,

V �.t; x/ D max
kqk�1

min
iD1;:::;m

˚hq; G.t1; t/xi � ¡.G0.t1; t/q j Ew
i Œt �/

�
(4.37)

(especially so, since parameters of the sets are stored across multiple processes).
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To cope with such a difficulty, we replace V �.t; x/ by

OV �.t; x/ D d.G.t1; t/x; G.t1; t/ OW�Œt �/; OW�Œt � D
m[

iD1

Ew
i Œt � D

m[
iD1

E.w.t/; W .i/� .t//;

which is equivalent to interchanging the maximum and minimum in (4.37)

OV �.t; x/ D min
iD1;:::;m

max
kqk�1

fhq; G.t1; t/xi � ¡.G0.t1; t/q j Ew
i Œt �/g: (4.38)

This leads to a vector l� D l�.t; x/ D @V �=@x D l�
i0

, where i0 2 1; : : : ; m is the
minimizers index and l�

i0
the maximizer in (4.38) for the fixed i D i0.

Thus, to synthesize controls, each process locally finds an ellipsoid nearest to
the on-line position. Then the process that is the nearest among such ellipsoids is
chosen to calculate the control by using its own ellipsoid. The specified control is
finally communicated to all the other processes.

Simulation Results

Numerical results were obtained in computing feedback controls for a chain of
oscillating springs (4.24), [57], with the following parameters (here N is the number
of links and n D 2N is the system dimension):

• N D 25 (n D 50) for a system with disturbance, without matching condition;
• N D 50 (n D 100) for a system with one-directional scalar control (u 2 Œ0; ��);
• N D 50 (n D 100) for an inhomogeneous oscillating system (the lower part is

twice as heavy as the upper);
• N D 100 (n D 200) for a system with scalar control;
• N D 250 (n D 500) for a system with control of dimension N .

We do not compare these results with a non-parallel version of our code, since
in the latter case the existing memory limitations usually prevent it from being run
with large values of n.



Chapter 5
The Comparison Principle: Nonlinearity
and Nonconvexity

Abstract This chapter introduces generalizations and applications of the presented
approach prescribed earlier to nonlinear systems, nonconvex reachability sets and
systems subjected to non-ellipsoidal constraints. The key element for these issues
lies in the Comparison Principle for HJB equations which indicates schemes of
approximating their complicated solutions by arrays of simpler procedures. Given
along these lines is a deductive derivation of ellipsoidal calculus in contrast with
previous inductive derivation.

Keywords Nonlinearity • Nonconvexity • Comparison principle • Unicycle
• Boxes • Zonotopes • Ellipsoids

As indicated above, the solutions to many problems of control synthesis for systems
described by ODEs reduce to an investigation of first-order PDEs—the HJB type—
and their modifications [21, 24, 178, 198, 226, 248]. Similar equations may also be
used for calculating forward and backward reachability sets for control systems with
or without disturbances (the HJB equations).1

It is also well known that solutions to equations of the HJB type are rather
difficult to calculate, and their respective algorithms are still being developed
[221, 244]. However, for many problems, as those on reachability, on design of
safety zones for motion planning or on verification of control algorithms, one may
often be satisfied with approximate solutions that require a smaller computational
burden and may be achieved through substituting original HJB equations by
variational inequalities [23] due to certain Comparison Principles [48,95,149,186].
This chapter indicates such comparison theorems which are also applicable to
nonlinear systems for both smooth and nonsmooth solutions and to description of
nonconvex sets. They also allow to derive ellipsoidal methods through deductive
procedures in contrast with inductive approaches of Chap. 3. At the same time,

1 Such considerations are also true for systems with uncertain (unknown but bounded) disturbances
(the HJBI equation) [123, 176, 222], and for dynamic game-type problems. They involve more
complicated equations of Hamilton–Jacobi–Bellman–Isaacs (HJBI) type, [18, 19, 102, 123]. [121,
150,183]. These issues are mostly, except Chaps. 9 and 10, beyond the scope of the present volume.
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when applied to linear-convex reachability problems, such estimates may lead to
effective external and internal approximations of reach sets that converge to exact.
This includes the treatment of controls with hard bounds generated not only by
ellipsoids, but also by box-valued sets and symmetric polyhedrons (zonotopes).

5.1 The Comparison Principle for the HJB Equation

5.1.1 Principal Propositions for Comparison Principle

In this section we deal with ordinary systems without disturbances. Consider first
the nonlinear equation

Px D f .t; x; u/; t 2 Œt0; ª� D Tª (5.1)

which coincides with Eq. (1.1) whose properties are described in the first lines of
Sect. 1.1.

As indicated in Sect. 2.3, given initial set X 0 (for t D t0) and a target set M
(for t D ª/, it makes sense to construct forward X Œt � D X .t I t0; X 0/; 8t � t0/;

and backward W Œt � D W .t I ª; M /; t � ª; reachability tubes for system (5.1),
emanating from set-valued positions ft0; X 0g and fª; M g, respectively [121, 178].

Introduce notations

H .t; x; p/ D maxf< p; f .t; x; u/ > ju 2 P .t/g:

It is well known (see Sect. 2.3 and also [145, 178, 198]) that the solution V.t; x/

of the respective “forward” HJB equation of type

Vt C H .t; x; Vx/ D 0; V .t0; x/ D d.x.; X 0/; (5.2)

allows to calculate X Œt � D X .t; t0; X 0/ as the level set:

X Œ£� D fx W V.£; x/ � 0g:

The last property is independent of whether V was obtained as a classical or a
generalized solution of Eq. (5.2).

Thus the exact description of set X Œ£� in general requires to solve the first-order
PDE (5.2). Such a problem may be rather difficult to solve as the reachability sets
for nonlinear systems may turn out to have a very peculiar form (see [225, 255]).

We shall therefore seek for the upper and lower estimates of functions V.t; x/,
and as a consequence, also the external and internal estimates of sets X Œ£�: This
move is motivated by a desire to describe the estimates through relations simpler
than those for the exact solution.
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Assumption 5.1.1. There exist functions H.t; x; p/ and functions wC.t; x/ 2
C1ŒTª�; �.t/ 2 L1, which satisfy the inequalities

H .t; x; p/ � H.t; x; p/; 8ft; x; pg; (5.3)

wC
t C H.t; x; wC

x / � �.t/: (5.4)

Theorem 5.1.1. Let functions H.t; x; p/; wC.t; x/; �.t/ satisfy Assumption 5.1.1.
Then the following estimate is true

X Œt � 	 XCŒt �; (5.5)

where

XCŒt � D fx W wC.t; x/ �
Z t

t0

�.s/ds C maxfwC.t0; x/jx 2 X 0gg: (5.6)

Let there exist a pair x0� 2 X 0; u�.t/ 2 P .t/; t � t0, such that the respective
trajectory x�.t/ 2 X Œt �. Then

dwC.t; x/=dt jxDx�.t/ D wC
t .t; x�/ C hwC

x .t; x�/; f .t; x�; u�/i �

� wC
t .t; x�/ C H .t; x�; wC

x / � wC
t .t; x�/ C H.t; x�; wC

x / � �.t/:

The last relations imply

dwC.t; x/=dt jxDx�.t/ � �.t/:

Integrating this inequality from t0 to t , we have

wC.t; x�.t// �

�
Z t

t0

�.s/ds C wC.t0; x�.t0// �
Z t

t0

�.s/ds C maxfwC.t0; x/jx 2 X 0g;

which means x�.£/ 2 XCŒ£� and the theorem is proved.
Recall that when function V.t; x/ is nondifferentiable, Eq. (5.2) is written down

only as a formal symbolic notation and its solution should be considered in a
generalized “viscosity” sense [16, 50, 80] or equivalent “minimax” sense [247] or
“proximal” sense [48].

Similar theorems are true for backward reachability sets W Œt � (or, in other words
the “weakly invariant sets” relative target set M or the “solvability sets” in terms of
[174]). Namely, if W .t; ª; M / D W Œt � is a backward reachability set from target
set—a compact M 	 Rn, then

W Œ£� D fx W V .b/.£; x/ � 0g;
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where V .b/.t; x/ is the solution (classical or generalized) of the “backward” HJB
equation

V
.b/

t � H .t; x; �V .b/
x / D 0; V .b/.ª; x/ D d 2.x; M /: (5.7)

which, in its turn, is generated by the problem

V .b/.£; x/ D minfd 2.xŒª�; M / j xŒ£� D x; u.�; �/ 2 UC g: (5.8)

Here UC is the class of closed-loop controls in which the last problem does have an
optimal closed-loop solution u0.�; �/ which generates an optimal trajectory x0Œª� D
x0.ªI £; x/:

Assumption 5.1.2. There exist functions H.t; x; p/, w.bC/.t; x/ 2 C1; �.t/ 2 L1,
which satisfy the inequalities

H .t; x; p/ � H.t; x; p/; 8ft; x; pg;

w.bC/
t � H.t; x; �w.bC/

x / � �.t/ � 0;

w.bC/.ª; x/ � V .b/.ª; x/; 8x:

Denote

H .b/.t; x; p/ D minfhp; f .t; x; u/i j u 2 P .t/g D �H .t; x; �p/:

Then, under the last assumption, we have

dw.bC/.t; x/=dt ��.t/ � w.bC/
t �H .b/.t; x; w.bC/

x / � w.bC/
t �H.t; x; �w.bC/

x /��.t/ � 0:

Integrating this inequality from £ to ª along an optimal trajectory x0Œt � which starts
at x and ends at x0Œª�; generating the value V .b/.£; x/, (as introduced in the previous
lines), we come to relations

w.ª; x0Œª�/ � w.bC/.£; x/ C
Z ª

£

�.t/dt;

where w.bC/.ª; x0Œª�/ � V .b/.ª; x0Œª�/ according to the last condition of
Assumption 5.1.2.

However, along the optimal trajectory x0Œt �; t 2 Œ£; ª�; we have

V .b/.£; x/ D V .b/.t; x0Œt �/ D V .b/.ª; x0Œª�/: (5.9)

(see, for example, [48, Sects. 7.5–7.7]). This brings us to the next theorem.
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Theorem 5.1.2. Let functions H.t; x; p/; w.bC/.t; x/; �.t/ satisfy Assumption
5.1.2. Then there exists a lower estimate for V .b/.£; x/ W

w.bC/.£; x/ C
Z ª

£

�.t/dt � V .b/.£; x/;

and an external estimate for W Œ£� W

W Œ£� 	 WCŒ£�;

where

WCŒ£� D fx W w.bC/.£; x/ C
Z ª

£

�.t/dt � 0g:

Exercise 5.1.1. (a) Prove a proposition similar to Theorem 5.1.1 for the backward
reach set W Œ£�:

(b) Prove a proposition similar to Theorem 5.1.2 for the forward reach set X Œ£�.

Let us now pass to the discussion of internal estimates for the reachability sets
and the related HJB equations. We shall consider the internal estimates for backward
reachability sets W Œt � D W .t; x; M /. As in the above, here we do not necessarily
require differentiability of the value function V .b/.t; x/.

Let function V .b/.t; x/ of Eq. (5.7) be continuous in all the variables, being a
generalized (viscosity) solution of this equation (in particular, it may also turn out
to be classical).

Consider the next assumption.

Assumption 5.1.3. There exist function h.t; x; p/ and function w�.t; x/ 2 C1;

which satisfy the inequalities

H .t; x; p/ � h.t; x; p/; 8ft; x; pg;

w�
t .t; x/ � h.t; x; �w�

x .t; x// � 0;

w�.ª; x/ � V .b/.ª; x/:

Under Assumption 5.1.3 we have

w�
t � H .t; x; �w�

x / � w�
t � h.t; x; �w�

x / � 0:

Integrating the last inequality from £ to ª, along some optimal trajectory x0Œs� D
x0.s; £; x/ which ends in x0Œª�; we come to

w�.ª; x0Œª�/ � w�.£; x/
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and further, due to third condition, to

V.ª; x0Œª�/ � w�.£; x/: (5.10)

However V.ª; x0Œª�/ D V.£; x/, according to (5.9). Comparing this with (5.10),
we come to the next proposition.

Theorem 5.1.3. Under Assumption 5.1.3 the following estimate is true

V .b/.£; x/ � w�.£; x/:

Denoting W �Œt � D fx W w�.t; x/ � 0g and using the last inequality, we come to
the conclusion.

Corollary 5.1.1. Under Assumption 5.1.3 the next inclusion is true

W �Œ£� 	 W Œ£�: (5.11)

We shall further observe, in the linear-convex case, how comparison theorems may
be used for obtaining ellipsoidal estimates of reachability sets.

5.1.2 A Deductive Approach to Ellipsoidal Calculus

Let us now return to linear systems of type

Px D A.t/x C B.t/u; (5.12)

under an ellipsoidal constraint on control u and a similar one on target set M ,
namely,

u 2 P .t/ D E.pu.t/; P.t//; M D E.m; M/; t 2 Œt0; ª�; (5.13)

where P 0.t/ D P.t/ > 0; M 0 D M > 0. As usual, a nondegenerate ellipsoid is
given here by the inequality

E.pu; P / D fu W hu � pu; P �1.u � pu/i � 1g;

with its support function being

¡.l j E.pu; P // D maxfhl; pijp 2 E.pu; P /g D hl; pui C hl; P li1=2:
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Then

�H .t; x; �p/ D minfhp; f .t; x; u/i j u 2 P .t/g D H .b/.t; x; p/

D hp; A.t/xi C min
u

fhp; B.t/ui j u 2 E.pu.t/; P.t//g D

D hp; A.t/x C B.t/pu.t/i � hp; B.t/P.t/B 0.t/pi1=2;

and with these relations the HJB equation (5.7), namely,

V
.b/

t C H .b/.t; x; V .b/
x / D 0; V .b/.ª; x/ D d 2.x; M /: (5.14)

acquires the form specific for a linear system.
In order to get the lower bound for V .b/ and the external bound for set W Œt �, we

apply Theorem 5.1.2 and Corollary 5.1.1. We further use the next inequalities

hp; B.t/P.t/B 0.t/pi1=2 � ”2.t/ C .4”2.t//�1hp; B.t/P.t/B 0.t/pi;

where ”2.t/ > 0 is arbitrary. Here an equality is attained with

”2.t/ D .1=2/hp; B.t/P.t/B 0.t/P.t/i1=2:

Under Assumption 5.1.2, as applied to system (5.1), the function w.t; x/ is taken
to be quadratic:

w.t; x/ D hx � x�; K.t/.x � x�/i � 1; (5.15)

where K.t/ D K 0.t/ > 0 is differentiable. Then we have

dw.t; x/=dt D wt C H .b/.t; x; wx/ D

D wt C hwx; A.t/x C B.t/pu.t/i � hwx; B.t/P.t/B 0.t/wxi1=2 �

� wt C hwx; A.t/x C B.t/pu.t/i � ”2.t/ � .4”2.t//�1hwx; B.t/P.t/B 0.t/wxi:

Substituting w.t; x/ D hx � x�.t/; K.t/.x � x�.t//i � 1, we further obtain

wt CH .b/.t; x; wx/ � ˚hx �x�.t/; PK.t/.x �x�.t//i�2h Px�.t/; K.t/.x �x�.t//iC

C2hK.t/.x � x�.t//; A.t/x C B.t/pu.t/i�

� .”2.t//�1hK.x � x�.t//; B.t/P.t/B 0.t/K.x � x�.t//i� � ”2.t/: (5.16)
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In order that satisfy this scheme we shall demand that the expression in curly
brackets of (5.16) is equal to zero for all x � x�:

hx � x�.t/; PK.t/.x � x�.t//i � 2h Px�.t/; K.t/.x � x�.t//iC

C2hK.t/.x � x�.t/; A.t/.x � x�.t// C A.t/x�.t/ C B.t/pu.t/i�

�.”2.t//�1hK.t/.x � x�.t//; B.t/P.t/B 0.t/K.t/.x � x�.t//i D 0

Equalizing with zero the terms with multipliers of second order in x�x�; then those
of first order in the same variable, we observe that the last equality will be fulfilled
if and only if the following equations are true

PK C KA.t/ C A0.t/K � .”2.t//�1KB.t/P.t/B 0.t/K D 0; (5.17)

Px� D A.t/x�.t/ C B.t/pu.t/; (5.18)

with boundary conditions

K.ª/ D M �1; x�.ª/ D m: (5.19)

Under Eqs. (5.17), (5.18) relation (5.16) yields inequality

dw=dt � �”2.t/:

Integrating it from £ to ª, along an optimal trajectory x0Œt �; t 2 Œ£; ª�, which starts
at xŒ£� D x and ends at xŒª�, generating V .b/; we come to condition

w.£; x/ � w.ª; x/ C
Z ª

£

”2.t/dt; (5.20)

where w.t; x/ D .x � x�.t/; K.t/.x � x�.t// � 1, and K.t/; x�.t/ are defined
through Eqs. (5.17), (5.18) with

w.ª; x/ D hx � x�.ª/; M �1.x � x�.ª//i:

Summarizing the above, we come to the proposition

Theorem 5.1.4. (i) Function

w0.t; xj”.�// D w.t; x/ �
Z ª

t

”2.s/ds
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is a lower bound of V .b/.t; x/:

w0.t; xj”2.�// � V .b/.t; x/: (5.21)

(ii) The inclusion

W Œt � 	 WCŒt �; (5.22)

is true, where

WCŒt � D
�

x W hx � x�.t/; K.t/.x � x�.t//i � 1 C
Z ª

t

”2.s/ds

�
:

We further transform Eq. (5.17) to new variables, substituting K for KC according
to relations

K D K�1; PK D �K PKK ; KC.t/ D
�

1 C
Z ª

t

”2.s/ds

�
K .t/

We then come to equations

PKC D A.t/KC C KCA0.t/ � �.t/KC � .�.t//�1B.t/P.t/B 0.t/; (5.23)

and boundary condition KC.ª/ D M .
Here

�.t/ D ”2.t/

�
1 C

Z ª

t

”2.s/ds

��1

:

The formulas derived here allow the next conclusion.

Theorem 5.1.5. The following inclusion (external estimate) is true

W Œt � 	 WCŒt �;

where

WCŒt � D E.x�.t/; KC.t// D fx W hx � x�.t/; K �1C .t/.x � x�.t//i � 1g;

whatever be the function �.t/ > 0.

Remark 5.1.1. The last relation, namely, the external ellipsoidal approximation of
the backward reach set W Œt � was derived through a deductive scheme, from the
HJBI equations. Recall that similar results were achieved earlier, in Chap. 3, through
an inductive scheme (see also [174, 180]), without applying the Hamiltonian
formalism. There the structure of differential equations indicated in Theorem 3.3.1
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for the configuration matrices of the approximating “inductive” ellipsoids is similar
to (5.23) for matrices KC of the “deductive” external ellipsoids derived in this
section.

We now pass to internal ellipsoidal approximations of sets W Œ£�: Starting with
Eq. (5.14), where

H .b/.t; x; p/ D hp; A.t/x C B.t/pu.t/i � hp; B.t/P.t/B 0.t/pi1=2;

we shall apply Theorem 5.1.3 and Corollary 5.1.1. In doing this we shall use the
inequality

hp; B.t/P.t/B 0.t/pi1=2 � hT .t/p; T .t/pi�1=2hp; S.t/.B.t/P.t/B 0.t//1=2pi;

where p 2 Rn is arbitrary and S.t/ is any continuous matrix function, whose values
S.t/ are orthogonal matrices, namely, S.t/S 0.t/ D I and T .t/ D T 0.t/ is a matrix
function with T .t/p 6D 0:

Here an equality is attained under coordinated collinearity of vectors
S.t/.B.t/P.t/B 0.t//1=2p and T .t/p.

As in the “external” case, under Assumption 5.1.3, when applied to sys-
tem (5.12), function w�.t; x/ is taken quadratic: w�.t; x/ D hx � x�; K�.t/.x �
x�/i � 1, with K�.t/ D .K�/0.t/ > 0 and x�.t/ differentiable. Taken T .t/ D
.K�/�1; we then have

w�
t CH .b/.t; x; w�

x /Dw�
t Chw�

x ; A.t/xCB.t/pu.t/i�hwx; B.t/P.t/B 0.t/w�
x i1=2 �

� w�
t C hw�

x ; A.t/x C B.t/pu.t/i�

�h.K�/�1.t/w�
x ; .K�/�1.t/w�

x i�1=2h.K�/�1.t/w�
x ; S.t/.B.t/P.t/B 0.t//1=2w�

x i:

Note that in the domain

D.r/ D ft; x W hx � x�.t/; K�.t/.x � x�.t//i < r2; t 2 Œ£; ª�g

the following condition is true (PB.t/ D B.t/P.t/B 0.t/)

w�
t C H .b/.t; x; w�

x / �
�

hx � x�.t/; PK�.t/.x � x�.t//i

�2h Px�.t/; K�.t/.x � x�.t//i C 2hK�.t/.x � x�.t//; A.t/x C B.t/pu.t/i�

� 2r�1hx � x�.t/; S.t/P
1=2
B .t/K�.t/.x � x�.t//i

�
: (5.24)
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The last relation will reflect the scheme of Theorem 5.1.4 with r sufficiently
large. Then, in order to satisfy this scheme, it will be sufficient that the expression
in curly brackets will be equal to zero in D.r/: Demanding this equality, we have

hx � x�.t/; PK�.t/.x � x�.t//i � 2h Px�.t/; K�.t/.x � x�.t//iC

C2hK�.t/.x � x�.t//; A.t/.x � x�.t// C A.t/x�.t/ C B.t/pu.t/i

�2r�1hx � x�.t/; S.t/P
1=2
B .t/K�.t/.x � x�.t//i D 0

for all ft; x 2 D.r/g: Equalizing with zero the terms with multipliers of second
order in x � x�; then those of first order in the same variable, we observe that the
last equality will be fulfilled if and only if the next equation

PK� C .K�A.t/CA0.t/K� �r�1.K�P
1=2
B S 0.t/CS.t/P

1=2
B .t/K�/ D 0; (5.25)

is true together with Eq. (5.18) for x�.t/ and with boundary conditions

K�.ª/ D M �1; x�.ª/ D m: (5.26)

Under (5.25), (5.18), (5.26) relation (5.24) yields inequality

dw�=dt � 0;

integrating which from £ to ª, along an optimal trajectory x0Œt �; t 2 Œ£; ª�; which
starts at xŒ£� D x; we come to condition

w�.£; x/ � w.ª; x0Œª�/ D V .b/.ª; x0Œª�/ D V .b/.t; x/; (5.27)

where w.t; x/ D hx � x�.t/; K�.t/.x � x�.t//i � 1:

Summarizing the above, we come to the proposition

Theorem 5.1.6. Function w�.t; x/ is an upper bound of V .b/.t; x/:

w�.t; x/ � V .b/.t; x/:

The inclusion

W Œt � 
 W�Œt �; (5.28)

is true, where

W�Œt � D fx W hx � x�.t/; K�.t/.x � x�.t//i � 1g:
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Transforming Eq. (5.28) to new variables, with

K� D K�1; PK� D �K� PK�K�;

we come to equations

PK� D A.t/K� CK�A0.t/�r�1.t/.K�S.t/P
1=2
B .t/CP

1=2
B .t/S 0.t/K�/; (5.29)

and boundary condition K�.ª/ D M . Then

W�Œt � D fx W hx � x�.t/; .K�.t//�1.x � x�.t//i � 1g: (5.30)

Here r.t/ is a tuning parameter which may be selected on-line, as a function of
jjK�.t/jj. Then the structure of Eq. (5.29) will be of the type we had in (3.109).

Note that the centers x�.t/ of the indicated internal ellipsoids will be the same
as for external estimates, being in both cases described by Eq. (5.18).

Remark 5.1.2. By an appropriate selection of parameterizers �.t/; S.t/ for
Eqs. (5.23), (5.29), similar to those of Sects. 3.3 and 3.8, one may obtain for each
“good” direction l 2 Rn of Assumption 3.3.1 an ellipsoid which is “tight” along
this direction. Namely, for each l one may indicate such parameters �.�/; S.�/ for
which equalities

¡.l jW Œt �/ D ¡.l jWCŒt �/; ¡.l jW Œt �/ D ¡.l jW�Œt �/

would be true.

5.2 Calculation of Nonconvex Reachability Sets

Consider the reachability set XŒ‚� D X .‚; t0; X 0/ of Definition 2.3.1 within an
interval ‚ D Œ’; “�: As indicated in Sect. 2.7

XŒ‚� D
[

fX Œt � j t 2 ‚ g:

We shall now calculate XŒ‚� through ellipsoidal approximations restricting our-
selves to the “external” case. The “internal” solutions could be designed within a
similar scheme.
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Recall that due to Theorem 3.3.2 and Comparison in Principle as in Sect. 5.1.2,
we may write2:

X Œt � D
\

l

fE.x�.t/; XlCŒt �/ j hl; li D 1g

and equivalently X Œt � D fx W V 0.t; x/ � 1g: where

V 0.t; x/ D max
l

fV 0C.t; x; l/ j hl; li � 1g;

V 0C.t; x; l/ D hx � x�.t/; .XlCŒt �/�1.x � x�.t//i: (5.31)

Then we have

XŒ‚� D
[

fX Œt � j t 2 ‚g D fx W V0.‚; x/ � 1g; (5.32)

where

V0.‚; x/ D min
t

fV 0C.t; x/ j t 2 ‚g D min
t

max
l

fV 0C.t; x; l/ j hl; li D 1; t 2 ‚g:
(5.33)

This leads to

Theorem 5.2.1. The reachability set XŒ‚� within the time interval ‚ D Œ’; “� may
be described through (5.31)–(5.33).

According to the theory of minimax problems (see [62]), we have

V0.‚; x/ D min
t

max
l

fV 0C.t; x; l/ j hl; li D 1; t 2 ‚g �

� max
l

min
t

fV 0C.t; x; l/ j hl; li D 1; t 2 ‚g: (5.34)

Then, in terms of sets, the relation for XŒ‚� may be expressed as

XŒ‚� D
[

t

\
l

fE.x�.t/; XlCŒt �/ j hl; li D 1; t 2 ‚g 	

	
\

l

[
t

fE.x�.t/; XlCŒt �/ j hl; li D 1; t 2 ‚g; (5.35)

where x�Œt �; XlCŒt � are defined by Theorems 3.3.1, 3.3.2 (Eqs. (3.31), (3.32)).

2In Sect. 5.1.2 we calculated the backward reach set W Œt � due to value function V .b/.t; x/. Here,
in a similar way, we calculate the forward reach set X Œt � due to value function V 0.t; x/.
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Recalling notation ECŒt; l � D E.x�.t/; XlCŒt �/, introduce

X Œt � D
\

l

fECŒt; l � j hl; li D 1g; X Œ‚; l� D
[

t

fECŒt; l � j t 2 ‚g:

Then, in terms of sets we have the following proposition

Theorem 5.2.2. The next relations are true

X Œ‚� D
[

t

fX Œt � j t 2 ‚g 	
\

l

fX Œ‚; l� j hl; li D 1g:

Remark 5.2.1. The conditions for equality of sets

[
t

\
l

f�g D
\

l

[
t

f�g

would be the set-valued analogy of the theorem on existence of a saddle point in l; t

(mint maxl VC.t; x; l/ D maxl mint VC.t; x; l/) for function VC.t; x; l/:

We further we observe

[
t

\
l.�/

fE.x�.t/; XlCŒt �/ j l.�/ 2 SSg.�/; t 2 ‚g 	

\
l.�/

[
t

fE.x�.t/; XlCŒt �/ j l.�/ 2 SSg.�/; t 2 ‚g; (5.36)

where SSg.�/ is the set of all good curves kl.t/k D 1; t 2 ‚; normalized according
to Sect. 3.3, to lie on a unit sphere.

Exercise 5.2.1. Indicate conditions when the operation of inclusion (	) in (5.36)
may be substituted by an equality.

Exercise 5.2.2. Indicate internal ellipsoidal approximations for set XŒ‚�:

Example 5.8.

Consider system

Px1 D x2 C u C r cos ®t; Px2 D �¨2t C r sin ®t; (5.37)

with t 2 Œ0; £�; juj � �; x.t0/ 2 X0.
We illustrate the calculation of XŒ‚�; ‚ D Œ0; £�; and its upper estimate X lCŒ‚�;

assuming £ D 1; ¨ D 1; � D 1; X0 D xc C B.0/; x0
c D .1; 1/:3

3The illustrations for this example were done by Zakroischikov.
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Fig. 5.1 The set XCŒ‚� (in red) and its covering by intersection of nonconvex sets X l
C

Œ‚�

Shown in Fig. 5.1 is the set XCŒ‚� (in red) and its covering by intersection of
nonconvex sets X lCŒ‚�; calculated along good curves l.t/: An example of such
covering

XCŒ‚ j l�; l��� D XCŒ‚; l��
\

XCŒ‚; l���

by only two such sets calculated from good curves generated by l�.£/ D
.�1; 0/; l��.£/ D .�0:54; 0:83/ is indicated in Fig. 5.2.
Figures 5.3 and 5.4 show set XŒ‚� and its external approximation by an ellipsoidal
tube.
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Fig. 5.2 Covering of XCŒ‚�

by only two sets from X l
C

Œ‚�

Fig. 5.3 Set XŒ‚�



5.3 Applications of Comparison Principle 213

Fig. 5.4 External approximation of set XŒ‚�

5.3 Applications of Comparison Principle

5.3.1 Forward Reachability

Here we briefly indicate a result similar to Theorem 5.1.1 of Sect. 5.1 for a forward
reachability set. Take linear system (5.12), with constraints on x.t0/; u.t/ given by
nondegenerate ellipsoids:

x.t0/ 2 E.x0; X0/; u.t/ 2 E.pu.t/; P.t//; (5.38)

Then

H .t; x; p/ D hp; A.t/x C B.t/pu.t/i C hp; B.t/P.t/B 0.t/pi1=2 � (5.39)

� hp; A.t/x C pu.t/i C �.t/ C .4�.t//�1.hp; B.t/P.t/B 0.t/pi D H.t; p; x/

for any �.t/ > 0, with equality attained if

�.t/ D �e.t; p/ D 1

2
hp; B.t/P.t/B 0.t/pi1=2:
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Let us now look for w.t; x/ as a quadratic form, w.t; x/ D .hx � x�.t/; K.t/.x �
x�.t//i � 1; where K.t/ D K 0.t/ is differentiable and requires that w satisfies the
PDE

wt C hwx; A.t/x C B.t/pui C .4�.t//�1hwx; B.t/P.t/B 0.t/wxi D 0 (5.40)

with boundary condition

w.t0; x/ � hx � x0; .X0/�1.x � x0/i: (5.41)

Then, after an integration from t0 to t , we come to the inequality

w.t; x.t// � w.t0; x.t0// C
Z t

t0

�.s/ds � 1 C
Z t

t0

�.s/ds: (5.42)

Here K.t/ may be obtained through a standard procedure of solving the resulting
Riccati equation

PK D �KA.t/ � A0.t/K � 1

�.t/
.K; B.t/P.t/B 0.t/K/; (5.43)

with equation

Px� D A.t/x� C B.t/pu.t/:

where K.t0/ D .X0/�1; x�.t0/ D x0. Transformations

PK D �K PKK ; K D K�1; KC.t/ D
�

1 C
Z t

t0

�.s/ds

�
K .t/;

convert into

PKC D A.t/KCKCA0.t/ C 1

�.t/
B.t/Q.t/B 0.t/ C �.t/KC; KC.t0/ D .X0/�1;

(5.44)
Here

�.t/ D �.t/=.1 C
Z t

t0

�.s/ds/:

These equations now coincide with those of [21, 23, 24].
The level sets for function w.t; x/ D w�.t; x/ are ellipsoids E.x�.t/; KC.t//,

that depend on parameterizing functions � , namely,

fx W w�.t; x/ � 1g D E.x�.t/; KC.t// D EC
� Œt �: (5.45)
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Selecting k such functions �i .�/, we come to the estimate

X Œt � 	 \fEC
�i

Œt � j 1 � i � kg: (5.46)

An appropriate selection of �i .�/ ensures that ellipsoids EC
�i

Œt � are tight in the sense
that there is no other external ellipsoid of type (5.44) that could be squeezed in
between EC

�i
Œt � and X Œt �.

5.3.2 Systems with Hamiltonians Independent of the State

For a system of type

Px D f .t; u/; u 2 P .t/; (5.47)

with P .t/ compact and f continuous in t; x, find

V.£; x/ D min
u

f®.x.t0//jx.£/ D xg: (5.48)

Here are two simple examples of such systems:

Pxi D hu; Li .t/ui; i D 1; : : : ; n; hu; P ui � 1;

where P D P 0 > 0 and Li .t/ are n � n matrices, and

Pxi D sin.ui � ’i .t//; ui 2 Œ��i ; �i �; i D 1; : : : ; n:

Function V.t; x/ could be sought for through equation

Vt C H.t; Vx/ D 0; V .t0; x/ D ®.x/; (5.49)

with Hamiltonian

H.t; p/ D maxfhp; f .t; u/i ju 2 P .t/g;

and solution V.t; x/ taken, if necessary, as a viscosity solution. We shall indicate an
explicit formula for this function.

Assumption 5.3.1. (i) Function ®.x/ is proper, convex.
(ii) Its conjugate ®�.l/ is strictly convex and 0 2 int .Dom®/, so that ®�.l/ ! 1,

as hl; li ! 1, [237].
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Due to a theorem of Lyapunov on the range of a vector measure (see [3, 202])4 a
vector x.t0/ of type

x.t0/ D x C Q.£/; Q.£/ D �
£Z

t0

f .t; P .t//dt;

ranges over x C Q.£/, where Q.£/ is a convex compact set.
Then5

V.£; x/ D min
q

f®.q/ jq 2 .xCQ.£//g D min
q

sup
l

fhl; qi�®�.l/ jl 2 Rn; q 2 Q.£/g

D sup
l

fhl; xi � ¡.�l jQ.£// � ®�.l/g:

From here it follows that V.£; x/ is closed, convex in x, being the conjugate of a
closed convex function V �.£; x/ D ¡.l j � Q.£// C ®�.l/.

Lemma 5.3.1. Under Assumption 5.3.1 on ®.x/ the following equality is true:

V.£; x/ D V ��.£; x/: (5.50)

We further have

V �.£; l/ D sup
x

fhl; xi � V.£; x/g

D sup
x

fhl; xi � min
u.�/ max

p
fhp; x.t0/i � ®�.p/g

D sup
x

fhl; xi � min
u.�/ max

p
fhp; x �

Z £

t0

f .t; u.t//dti � ®�.p/gg

D max
u.�/ sup

x

fhl; xi � max
p

fhp; x �
Z £

t0

f .t; u.t//dti � ®�.p/gg

D max
u.�/ sup

x

min
p

fhl � p; xi C
Z £

t0

hp; f .t; u.t//idt C ®�.p/g

D max
u.�/ min

p
sup

x

fhl � p; xi C
Z £

t0

hp; f .t; u.t//idt C ®�.p/g

4 Do not confuse famous Lyapunov (1911–1973) with celebrated A.M. Lyapunov (1856–1918),
founder of modern stability theory.
5Here and below the conjugates of V are taken only in the second variables with £ fixed.
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D max
u.�/ f

Z £

t0

hl; f .t; u.t//idt C ®�.l/g

D
Z £

t0

H .t; l/dt C ®�.l/:

Therefore, due to (5.50),

V.£; x/ D V ��.£; x/ D max
l

fhl; xi �
Z £

t0

H .t; l/dt � ®�.l/g:

Assumption 5.3.1 allowed to interchange the sup and min operations above by
applying the minmax theorem of Ky Fan [72]. Also used was the property

max
u.�/

Z £

t0

hl; f .t; u.t//idt D
Z £

t0

maxff .t; u/ j u 2 P .t/gdt;

indicated in [238, Chap. 14, Sect. F]. The above results in the next proposition.

Theorem 5.3.1. Under Assumption 5.3.1 the following relation is true:

V.£; x/ D max
p

fhp; xi �
Z £

t0

H .t; p/dt � ®�.p/g: (5.51)

With H independent of both t; x the last relation is a formula of the Lax–Hopf type,
[17, 247]. The requirements of Assumption 5.3.1 are clearly satisfied by function
®.x/ D d 2.x; X 0/ with X 0 convex and compact.

Exercise 5.3.1. For system

Px1 D sin u; Px2 D cos u; u 2 Œ��; ��; t 2 Œt0; £�; (5.52)

find value function

V.£; x/ D minfjjx.t0/ � x0jj j x.£/ D xg; x0 2 X 0:

Here the Hamiltonian is

H .t; p/ D max
u

fp1 sin uCp2 cos u j u 2 Œ��; ��g D max
’

f.p2
1 Cp2

2/1=2 sin.uC’/g;

where ’ D arc cos .p1.p2
1 C p2

2/�1=2/: This gives H .t; p/ D .p2
1 C p2

2/1=2: We also
have

®�.p/ D I .B.0// C hp; x0i;

where I .B.0// is the indicator function for a Euclidean unit ball.
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Following (5.52), we have

V.£; x/ D max
p

fhp; x � x0i � .£ � t0/.p2
1 C p2

2/1=2 j p2
1 C p2

2 D 1g

Calculating the maximum, we come to the maximizers

p0
1D.x1�x0

1/..x1�x0
1/2C.x2�x0

2/2/�1=2; p0
2D.x2�x0

2/..x1�x0
1/2C.x2�x0

2/2/�1=2:

This yields V.£; x/ D ..x1 � x0
1/2 C .x2 � x0

2/2/1=2 � £:

We may now check that V.£; x/ is a solution to the HJB equation (5.49) which is

Vt C max
u

fVx1 sin u C Vx2 cos ug D 0; u 2 Œ��; ��:

Here Vt .£; x/ D �1; Vx.£; x/ D .p0
1; p0

2/0 D .cos ®; sin ®/0, so that H.t; p0/ D 1:

Hence this equation is satisfied together with its boundary condition. We finally
calculate the reachability set for system (5.52) which is

X Œ£� D fx W V.£; x/ � 0g D fx W .x1 � x0
1/2 C .x2 � x0

2/2 � £2g:

5.3.3 A Bilinear System

Consider the two-dimensional nonlinear system

Px1 D u1x1 � a12x1 log x2; Px2 D u2x2 � a21x2 log x1; (5.53)

with positive coefficients aij ; i; j D 1; 2 and a hard bound

u 2 P D fp W p�2
11 u2

1 C p�2
22 u2

2 � 1g (5.54)

on the control u D .u1; u2/0 with p D .p11; p22/0; pi i > 0.
Let us look for the reach set X.t; t0; x0/ for this equation, starting from point

x0 D .x0
1 ; x0

2/, where x0
i > 0; i D 1; 2. Then the corresponding forward HJB

equation is

Vt C max
u

fVx1.u1x1 � a12x1 log x2/ C Vx2.u2x2 � a21x2 log x1/ju 2 Eg D 0;

where E is the ellipsoid defined by (5.54). This further gives

Vt C .p11.Vx1/
2x1 C p22.Vx2/

2x2/
1
2 � .a12x1 log x2Vx1 C a21x2 log x1Vx2/ D 0;

(5.55)
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which has to be considered with boundary condition

V.t0; x/ D .log x � log x0; log x � log x0/2: (5.56)

Rather than solving the last equation, let us transform Eq. (5.53) to another
system of coordinates (system (5.53) may be linearized). Namely, taking zi D
log xi ; z0

i D log x0
i , we have

Pz1 D �a12z2 C u1; Pz2 D �a21z1 C u2; z.0/ D z0; (5.57)

under the same constraint (5.54). The reach set Z.£; 0; z0/ from point z0 for this
system may be written down using relations similar to (3.32), (2.68), with changes
in the definition of value function V.t; x/ from d 2.z.t0/; z0/ to d.z.t0/; z0/.

This leads to the value function

V ?.£; z/ D maxfhl; zi � ˚.£; z0; l/ j hl; li � 1g;

and further on, in view of Lemma 2.3.1, to a system of inequalities .l; z 2 R2/

Z.£; 0; z0/ D fz W l1z1 C l2z2 � ˚.£; z0
1; z0

2; l1; l2/g; 8l 2 R2;

where

˚.£; z0
1; z0

2; l1; l2/

D
Z £

0

 
.l1 cosh ’.£ � s/ � l2“�1 sinh ’.£ � s//2p11

C.�l1“�1 sinh ’.£ � s/ C l2 cosh ’.£ � s//2p22

!1=2

ds

C.l1 cosh ’£ � l2“�1 sinh ’£/z0
1 C .�l1“ sinh ’£ C l2 cosh ’£/z0

2;

where ’ D .a12a21/
1
2 ; “ D .a12=a21/

1
2 : Returning to the initial coordinates x, we

observe that the boundary @X .£; 0; x0/ of the exact reach set X .£; 0; x0/ is given by
equation

max
l

f.l1 log x1Cl2 log x2/�˚.£; log x0
1; log x0

2; l1; l2/jl W hl; li � 1g D 0 (5.58)

in the variables x1; x2, where x0
i D exp z0

i . The solution to (5.55), (5.56) then
happens to be V.£; x/ D V ?.£; log x1; log x2/.

Rather than calculating the exact V.£; x/ and X .£; 0; x0/, it may be simpler to
approximate these. To explore this option, let us first approximate function V ?.£; z/
by quadratic functions and set Z.£; 0; z0/ by ellipsoids.
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To approximate the convex compact reach set Z.£; 0; z0// by external ellipsoids
E.z?.t/; ZC.t// we may apply Eq. (5.44) where KC is substituted for ZC. We have

PZC D AZCZCA0 C 1

�.t/
Q.t/ C �.t/ZC; ZC.t0/ D 0; (5.59)

and

Pz? D Az?; z?.t0/ D z0;

where

A D
�

0 �a12

�a21 0

�
; P D

�
1 0

0 1

�
:

In order to ensure the property of tightness for ellipsoids E.z�.t/; ZC.t//, and
therefore an equality in (5.46), we have to select the parameterizing functions �.t/

as follows (see Chap. 3):

�.t/ D hl; F .t/QF 0.t/li 1
2 hl; ZC.t/li� 1

2 : (5.60)

Here

F.t/ D exp.�At/ D
0
@ cosh ’t “ sinh ’t

“�1 sinh ’t cosh ’t

1
A :

The reach tube ZŒt� D Z.t; 0; z0/ will now be exactly described by the formula (see
Chap. 3)

z�.t; l/ D z? C ZCŒt �F .t/lhl; F 0.t/ZCŒt �F .t/li� 1
2 ; (5.61)

its surface being totally covered by the parameterized family of nonintersecting
curves z�.t; l/ with parameter l 2 R2 and t � 0. The equality

ZŒt� D \fE.z?.t/; ZC.t//j�.�/g

will be true, where each ellipsoid

E.z�.t/; ZC.t// D fz W ˙2
i;j D1hzi � z?

i Œt �; ZCij Œt �.zj � z?
j Œt �//i � 1g:

Here ZCij are the coefficients of ZC. Returning to the original coordinates x and
taking x?

i .t/ D exp z?
i .t/, we observe that ellipsoids E.z�.t/; ZC.t// transform into

star-shaped nonconvex sets

S Œt � D fx W ˙2
i;j D1hlog xi � log x?

i Œt �; ZCij Œt �.log xj � log x?
j Œt �/i � 1g;



5.3 Applications of Comparison Principle 221

Fig. 5.5 Cost at time t D 0

so that now

XŒt� D \fS Œt �j�.�/g: (5.62)

The surface of the tube XŒt� D X.t; 0; x0/ will be totally covered by the family of
nonintersecting curves .i D 1; 2/

x�
i .t; l/ D exp.log.x?

i Œt � C .ZCŒt �F .t/l/i hl; F 0.t/ZCŒt �F .t/li� 1
2 /;

where .h/i stands for the i -th coordinate of vector h.
It is clear from the text that solutions to this example all lie within the first

quadrant fx1 > 0; x2 > 0g. They are illustrated in Figs. 5.5, 5.6, 5.7, 5.8, 5.9,
and 5.10. However, these figures are actually produced for a more general system

Pjx1jDu1jx1j�a12jx1j log jx2j; Pjx2jDu2jx2j�a21jx2j log jx1j; jx1j.0/>0; jx2j.0/>0;

which includes Eq. (5.53), if considered within the domain fx1 > 0; x2 > 0g. The
pictures for the quadrants fx1 < 0; x2 > 0g; fx1 < 0; x2 < 0g; fx1 > 0; x2 < 0g are
symmetrical with the one for fx1 > 0; x2 > 0g, relative to either the coordinate axes
or the origin.

Here Figs. 5.5, 5.6, and 5.7 illustrate the exact value function V.£; x/ for
£ D 0; £ D 0:5; £ D 1, respectively. Figure 5.8 shows four reach tubes XŒt� each of
which originates in one of the four coordinate quadrants. Figures 5.9 and 5.10 show
the cuts of the value function (for each of the four reach tubes) surrounded by the
boundaries of sets S Œt �—the preimages of ellipsoidal surfaces, for £ D 0:5; £ D 1.6

6This example was worked out by O.L. Chucha.
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Fig. 5.6 Cost at time t D 0.5

Fig. 5.7 Cost at time t D 1

5.3.4 External Ellipsoids for the Unicycle: Reachability

It is well known that reachability sets for nonlinear systems are typically nonconvex
and may have a peculiar form. But in some cases it may suffice to have ellipsoidal
estimates of their convex hulls instead. This may be given by an intersection
of an array of ellipsoids. Explained here is an example of such a convexifying
approximation. Consider the nonlinear system
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Fig. 5.8 Reach tube at time t=0

Fig. 5.9 Estimate at time t=0.5

Fig. 5.10 Estimate at time t=1
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Px1 D x2;

Px2 D r cos x5;

Px3 D x4;

Px4 D r sin x5;

Px5 D ’u;

(5.63)

which describes a controlled planar motion for the “unicycle.”
Here u is the control, r D const > 0, ’ D const > 0; x.0/ D x.t0/ 2 X 0 D

E

x0; X0

�
:

The domain U.�/ of admissible controls u is

U.�/ D L1.Œt0; t �/ \ fu W u.t/ 2 U D Œ�1; 1�:; a:eg: (5.64)

As before, let X Œt � D X .t; t0; X 0/ stand for the reachability set of system (5.63):

X

t; t0; X 0

� D ˚
x
ˇ̌ 9u.�/ 2 U.�/ W x.t0/ D x.0/ 2 X 0 W x.t; t0; x.0// D x

�
:

Problem 5.3.1. Find a family of external ellipsoidal estimates for the reachability
set X Œt � of system (5.63) such that for each t 2 Œt0; t1� it touches the convex hull
convX Œt � of X Œt � at a certain point x.t/.

To solve this problem we apply Sect. 5.1 of this chapter.

Using the Comparison Principle

Following Sects. 2.1 and 2.3, we introduce the value function:

V.t; x/ D inf
u.�/
˚

d

xŒt0�; X 0

� ˇ̌
xŒt � D x

�
;

so that

X Œt � D fx j V.t; x/ � 0g

Then the related HJB equation for V.t; x/ is as follows:

Vt C max
juj�1

fVx1x2 C Vx3x4 C rVx2 cos x5 C rVx4 sin x5 C ’uVx5g D 0: (5.65)

Solving the internal problem, we have

Vt C H .t; x; Vx/ D 0; H .t; x; p/ D p1x2 C p3x4 C rp2 cos x5 C rp4 sin x5 C ’jp5j D 0:

(5.66)
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To find the necessary approximation for convX Œt � we apply the comparison principle
(Theorem 5.1.1). Let wC.t; x/ 2 C1, �.t/ 2 L1, H .t; x; p/ satisfy conditions

H .t; x; p/ � H .t; x; p/ ; 8 ft; x; pg ;

wC
t .t; x/ C H


t; x; wC

x .t; x/
� � �.t/; 8t � t0: (5.67)

Then the next estimate is true.

X Œt � 	 XC Œt � ; (5.68)

where

XC Œt � D

8̂
<̂
ˆ̂:

x wC.t; x/ �
Z t

t0

�.£/d£ C max
x2X 0

wC.t0; x/

9>>=
>>;

: (5.69)

We now parameterize the family of functions wC.t; x/ by the pair fx.�/; p.�/g
which is the solution to the characteristic ODE system for our HJB PDE
equation (5.66) [51]. This ODE is written as

Px1 D x2; Pp1 D 0;

Px2 D r cos x5; Pp2 D �p1;

Px3 D x4; Pp3 D 0;

Px4 D r sin x5; Pp4 D �p2;

Px5 D ’Nu; Pp5 D r.p4 cos x5 � p2 sin x5/;

where Nu D sgn.p5/ with p5 ¤ 0 and Nu 2 Œ�1; 1� with p5 D 0. We will look for such
ellipsoidal approximations XCŒt � of reachability set X Œt �, that for each t would touch
convX Œt � at point x.t/. We further omit the argument “t” in Nx.t/; Np.t/, denoting
them as Nx; Np:

For arbitrary h > 0, œ1, œ2 the next inequality is true

p2 cos x5 C p4 sin x5 � 1

2
h�1hp;


e2e0

2 C e4e0
4

�
piC

Ch�1hœ1e2 C œ2e4; pi C œ1 cos x5 C œ2 sin x5 C ”:

Here œ1 D Np2 � r1 cos Nx5; œ2 D Np4 � r1 sin Nx5; ” D 1
2
h C 1

2
h�1.œ2

1 C œ2
2/,

Œe1; e2; e3; e4; e5� D I , with equality reached at . Nx; Np/. Also true is inequality

cos ¥ � a.¥ � N¥/2 C 2b.¥ � N¥/ C c;
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where

a D
(

�sin N¥=
�
2. N¥ � �/

�
; N¥ ¤ �

1
2
; N¥ D �

; b D a. N¥ � �/; c D cos N¥; N¥ 2 Œ0; 2��

with equality at ¥ D N¥. Upper estimates for functions � cos ¥, sin ¥, � sin ¥ may
be obtained similarly. Applying them, we come to

p2 cos x5 C p4 sin x5 � 1

2
h�1hp;


e2e0

2 C e4e0
4

�
pi C h�1hœ1e2 C œ2e4; piC

Chx � Nx; .œ1a1 Cœ2a2/e5e0
5.x � Nx/iC2hœ1b1 Cœ2b2/e5; x � NxiCœ1c1 Cœ2c2 C”;

with equality at x D Nx, p D Np.
Using this relation, we find an upper estimate H.t; x; p/ for H .t; x; p/:

H .t; x; p/ D p1x2 C p3x4 C rp2 cos x5 C rp4 sin x5 C ’jp5j �

� hp; A.x � x�/i C hp; Bpi C hx � x�; C.x � x�/iC

C2hf; x � x�i C 2hC.x� � Nx/; x � x�i C hg; pi C hAx�; pi C � D H.t; x; p/;

with equality reached at x D Nx; p D Np for any function x� D x�.t/. Here

A D e1e0
2Ce3e0

4; B D 1

2
rh�1.e2e0

2Ce4e0
4/C 1

2j Np5j’e5e0
5; C D r.œ1a1Cœ2a2/e5e0

5

f D r.œ1b1 C œ2b2/e5; g D rh�1.œ1e2 C œ2e4/;

� D 1

2
’j Np5j C hx� � Nx; C.x� � Nx/i C 2hf; x� � Nxi C r.œ1c1 C œ2c2 C ”/:

Now, for obtaining an ellipsoidal estimate we take wC.t; x/ as a quadratic form:

wC.t; x/ D hx � x�.t/; K.t/

x � x�.t/

�i
and write down for functions wC.t; x/ and H .t; x; p/ the inequality (5.67):7

hx � x�.t/; PK.t/.x � x�.t//i � 2hx � x�.t/; K.t/ Px�.t/iC

Chx � x�.t/; .K.t/A C A0K.t/ C 4B.t/ C C.t//.x � x�.t//iC

C2h.K.t/g.t/ C C.t/.x� � Nx/ C KAx� C f .t/; x � x�.t/i C �.t/ � �.t/:

7This example was worked out by V.V.Sinyakov.
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In order that this inequality would be true for any .x � x�.t// it is sufficient to have
the next equations satisfied:

PK.t/ C K.t/A C A0K.t/ C 4KB.t/K C C.t/ D 0; (5.70)

Px�.t/ D .A C K�1.t/C.t//x�.t/ C K�1.t/ .f .t/ � C.t/ Nx.t// C g.t/: (5.71)

From initial condition

max
x2X 0

wC.t0; x/ D 1

we now find such conditions for Eqs. (5.70), (5.71), namely:

K.t0/ D 
X0
��1

; x�.t0/ D x0:

Substituting K for its inverse K as

K .t/ D K�1.t/; PK .t/ D �K .t/ PK.t/K .t/;

then multiplying both parts of (5.70) by matrix K�1.t/ we get

PK .t/ D AK .t/ C K .t/A0 C K .t/C.t/K .t/ C 4B.t/; K .t0/ D X0;

Px�.t/ D .A C K .t/C.t//x�.t/ C K .t/ .f .t/ � C.t/ Nx.t// C g.t/; x�.t0/ D x0:

If under specific selection of f Nx.�/; Np.�/g the solution to the last equations exists,
then we may introduce notation

KC.t/ D
0
@1 C

tZ

t0

�.s/ds

1
AK .t/;

coming to the inclusion

X Œt � 	 XCŒt � D E.x�.t/; KC.t// D ˚
x W hx � x�.t/; K �1C .t/.x � x�.t//i � 1

�
;

where XCŒt � touches X Œt � at point NxŒt � (Figs. 5.11 and 5.12).
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Fig. 5.11 The external ellipsoidal-valued estimate for the reachability tube (1 ellipsoid)

Fig. 5.12 The external ellipsoidal estimate for the reachability set at time t1 D 1 (3 ellipsoids)
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5.4 Ellipsoidal Methods for Non-ellipsoidal Constraints

In the previous texts the main types of hard bounds on system parameters were taken
as ellipsoidal-valued. However one of the conventional types of such bounds are also
polyhedrons which led to specific algorithms based, for example, on linear program-
ming and related constructions. A detailed theory of approximating reachability
sets and control solutions for linear-convex systems by parallelotopes, including
the rectangular case (boxes), was developed by Kostousova [115]. However, in this
section, we indicate that symmetrical polyhedrons may be well treated by ellipsoidal
approximations, with reasonable computational burden, especially if one involves
parallel calculation.

5.4.1 Degenerate Ellipsoids: Box-Valued Constraints

Let us now assume that system (5.12) is subjected to hard bounds of the “box” type,
namely,

u.t/ 2 P .t/; x.t0/ 2 X 0;

where

P .t/ D fu 2 Rm W jui � u0
i .t/j � �i .t/g; �i .t/ � 0; (5.72)

X 0 D fx 2 Rn W jxj � x0
j j � �j g; �j � 0; i D f1; : : : ; mg; j D f1; : : : ; ng;

and u0
i .t/; x0

j are given.
Will it be possible to use ellipsoidal approximations for the respective reach sets

now, that P ; X 0 are not ellipsoids? To demonstrate that this is indeed possible, we
proceed as follows.

Let us define a box P with center p as P D B.p; P / where P D fp.1/; : : : ; p.m/g
is an array of m vectors (“directions”) p.i/ such that

B.p; P / D fx W x D p C
mX

iD1

p.i/’i ; ’i 2 Œ�1; 1�g:

Then box P .t/ of (5.72) may be presented as P .t/ D B.u0.t/; P.t//, where P D
fp.1/; : : : ; p.m/g, with p.i/ D e.i/�i .t/ and e.i/ is a unit orth oriented along the axis
0xi . Box B.u0.t/; P.t// is a rectangular parallelepiped. A linear transformation T

of box B.p; P / will give

T B.p; P / D B.Tp; TP /:

Thus, in general, box B.T u0.t/; TP.t// will not be rectangular. Let us now
approximate a box by a family of ellipsoids. Taking set B.0; P /, we may present it
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as the sum of m degenerate ellipsoids E.0; Qii /, where

Qii D e.i/e.i/0
qii ; qi i D �2

i :

Here Qii is an m � m diagonal matrix with diagonal elements qkk D 0; k 6D
i; qi i D �2

i (its only nonzero element is qii D �2
i ).

Then

B.0; P / D
mX

iD1

E.0; Qii / 	 E.0; Q.p//;

where p D fp1; : : : ; pmg and

Q.p/ D
� mX

iD1

pi

�� mX
iD1

p�1
i Qii

�
; pi > 0: (5.73)

Remark 5.4.1. These relations were usually applied to nondegenerate ellipsoids,
(see, [174], and Sect. 2.7 of this book). However, on applying Lemma 3.2.1 of [174],
one may observe that they are also true for the degenerate case.

Indeed, given vector l 2 Rm, take p D fp1; : : : ; pmg as

pi D jli j�i if li 6D 0; pi D –m�1jjl jj if li D 0; jjl jj2 D
mX

iD1

l2
i (5.74)

Here jli j D
q

l2
i , so

¡.l jE.0; Q.p/// D hl; Q.p/li1=2 �
mX

iD1

jli j�i C–jjl jj;
mX

iD1

jli j�i D ¡.l jB.0; P //

(5.75)
and

¡.l jQ.p// � ¡.l jB.0; P // � –jjl jj: (5.76)

Note that with © > 0 matrix Q.p/ is always nondegenerate. However, if we
allow – D 0, then, with p taken as in (5.74), relation (5.76) will turn into an
equality. Now let m� be the number of nonzero coordinates of vector p in Q.p/.
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Then we observe that with m D m� the matrix Q.p/ is nondegenerate. However,
with m� < m; Q.p/ will turn out to be degenerate and set E.0; Q.p// will be an
elliptical cylinder.8

Theorem 5.4.1. (i) An external ellipsoidal approximation

B.0; P / 	 E.0; Q.p//

is ensured by ellipsoid E.0; Q.p//, where Q.p/ is given by (5.73).
(ii) With p selected due to (5.74), the inequality (5.76) will be true and if one takes

– D 0 in (5.74), then (5.76) turns into an equality. However, with – D 0; m� <

m the ellipsoid E.0; Q.p// becomes degenerate (an elliptical cylinder).

A similar approximation is true for box B.0; X/ D X 0.

Lemma 5.4.1. Under a linear transformation T we have

T B.0; Q/ D B.0; T Q/ 	 E.0; TQ.p/T 0/ (5.77)

This follows directly from the above.

5.4.2 Integrals of Box-Valued Functions

Consider a set-valued integral

Z £

t0

B.0; B.t/P.t//dt (5.78)

and a partition ¢ŒN � similar to the one of Sect. 2.2. As before, the m � m diagonal
matrix P.t/ and n � m matrix B.t/ are continuous.

Then

Z £

t0

B.0; B.t/P.t//dt D lim
NX

iD1

mX
j D1

E.0; B.tj /Qjj .tj /B 0.tj //¢i

with N ! 1 we have ¢ŒN � D maxf¢i g ! 0. Applying again the formula for the
external ellipsoidal approximation of the sum of ellipsoids, we have

8 In the next subsection related to zonotopes we indicate a regularization procedure that ensures
a numerical procedure that copes with such degeneracy. This is done by substituting cylinders for
far-stretched ellipsoids along degenerate coordinates.
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NX
iD1

mX
j D1

E.0; B.tj /Qjj .tj /B 0.tj //¢i 	 E.0; XCN .pN Œ��//;

XCN .pN .�// D
� NX

iD1

mX
j D1

pjj .ti /

�� NX
iD1

mX
j D1

p�1
jj .ti /Qjj .ti /

�
; pjj .ti / > 0:

Here pN Œ�� D fpjj .ti / jj D 1; : : : ; m; i D 1; : : : ; N g:
Taking pjj .ti / to be the values of continuous functions pjj .t/; j D 1; : : : ; m;

and passing to the limit in the previous relation, with N ! 1; ¢ŒN � ! 0, we
come to the next conclusion.

Lemma 5.4.2. The following inclusion is true

Z £

t0

B.0; B.t/P.t//dt 	 E.0; XC.£; pŒ��// (5.79)

XC.pŒ��/ D
nX

j D1

� £Z

t0

pjj .t/dt

�� nX
j D1

Z £

t0

p�1
jj .t/B.t/Qjj .t/B 0.t/dt

�

for any continuous functions pjj .t/ > 0.

Here pŒ�� D fpjj .�/ jj D 1; : : : ; m; t 2 Œt0; £�g: For a nonrectangular box
T .t/B.0; P.t// D B.0; T .t/P.t// and a nonzero box T0B.0; X0/ D B.0; T0X0/

in a similar way we have

Theorem 5.4.2. The following inclusion is true

X Œ£� D B.0; T0X0/ C
Z £

t0

B.0; T .t/B.t/P.t//dt 	 E.0; XC.£; pŒ��// (5.80)

where

XC.£; pŒ��/ D
� nX

kD1

p
.0/

kk C
mX

j D1

£Z

t0

pjj .t/dt

�
� (5.81)

�
� nX

j D1

p
.0/�1

kk T0X0
kkT 0

0 C
mX

j D1

Z £

t0

p�1
jj .t/T .t/B.t/Qjj .t/B 0.t/T 0.t/dt

�
:

Here pŒ�� D fp.0/

kk ; pjj .�/ j k D 1; : : : ; nI j D 1; : : : ; m; t 2 Œt0; £�g:
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In order that an equality

¡.l j X Œ£�/ D ¡.l jB.0; T0X0// C
Z £

t0

¡.l jB.0; T .t/B.t/P.t///dt D ¡.l jE.0; XC.£; pŒ��///
(5.82)

would be possible for a given l 2 Rn, we would formally have to choose XC.£; pŒ��/
taking

pjj .t/ D hl; T .t/B.t/Qjj .t/B 0.T /T 0.t/li1=2; p
.0/

kk D hl; T0X0
kkT 0

0li1=2:

(5.83)

But a nondegenerate matrix XC.£; pŒ��/ would be possible only if pjj .t/ ¤ 0 almost

everywhere and p
.0/

kk ¤ 0. The equality is then checked by direct calculation.

Lemma 5.4.3. In order that for a given l 2 Rn there would be an equality (5.82), it
is necessary and sufficient that pjj .t/; p

.0/

kk would be selected according to (5.83)

and both of the conditions pjj .t/ ¤ 0 almost everywhere and p
.0/

kk ¤ 0 would be
true.

Otherwise, either an equality (5.82) will still be ensured, but with a degenerate
E.0; XC.£; pŒ��//, or, for any – given in advance, an inequality

¡.l jE.0; XC.£; pŒ��// � ¡.l jB.0; T0X0// �
Z £

t0

¡.l jB.0; T .t/B.t/P.t///dt � –jjl jj
(5.84)

may be ensured with a nondegenerate E.0; XC.£; pŒ��//. This may be done by
selecting

pŒ�� D p–Œ�� D fp.0/

kk ; pjj .�/ j k D 1; : : : ; nI j D 1; : : : ; m; t 2 Œt0; £; �g

as

p
.–/
jj .t/ D hl; T .t/B.t/Qjj .t/B 0.t/T 0.t/li1=2 C –jjl jj

2m.£ � t /
;

p
.0–/

kk D hl; T0X0
kkT 0

0li1=2 C –jjl jj
2n

:

It may be useful to know when pjj .t/ ¤ 0 almost everywhere.

Lemma 5.4.4. In order that pjj .t/ D hl; T .t/B.t/Qjj .t/B 0.t/T 0.t/li1=2 ¤ 0

almost everywhere, for all l 2 Rn, it is necessary and sufficient that functions
T .t/B.t/e.j / would be linearly independent. (The j -th column of T .t/B.t/ would
consist of linearly independent functions.)
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This follows from the definition of linearly independent functions. Note that with
– D 0 we have

� nX
kD1

p
.0/

kk C
mX

j D1

£Z

t0

pjj .t/dt

�
D hl; XC.£; pŒ��/li1=2; (5.85)

nX
kD1

p
.0/

kk D hl; T0X0T 0
0li1=2

nX
kD1

hl; T0X0
kkT 0

0li�1=2:

The parameters of the ellipsoid E.0; XC.£; pŒ��// may be expressed through a
differential equation. Taking XCŒ£� D XC.£; pŒ��/ and differentiating it in £, we get

PXCŒ£� D
� mX

j D1

pjj .£/

�� nX
kD1

p
.0/

kk

�1
T0X0

kkT 0
0

C
mX

j D1

£Z

t0

p�1
jj .t/T .t/B.t/Qjj .t/B 0.t/T 0.t/dt

�

C
� nX

kD1

p
.0/

kk
C

mX
j D1

£Z

t0

pjj .t/dt

�� mX
j D1

p�1
jj .£/T .£/B.£/Qjj .£/B 0.£/T 0.£/

�

Denoting

�j .£/ D pjj .£/

� nX
kD1

p
.0/

kk C
mX

j D1

£Z

t0

pjj .t/dt

��1

D �j jlj jhl; XCŒ£�li�1=2;

�
.0/

k D p
.0/

kk .

nX
kD1

p
.0/

kk /�1; X0C D hl; T0X0T 0
0li1=2

nX
kD1

hl; T0X0
kkT 0

0li�1=2T0X0
kkT 0

0

and rearranging the coefficients similarly to Sect. 3.3, we come to

PXCŒ£�D
� mX

j D1

�j .£/

�
XCŒ£�C

mX
j D1

��1
j .£/T .£/B.£/Qjj .£/B 0.£/T 0.£/; XCŒt0� D X0C:

(5.86)

Remark 5.4.2. If boxes B.p.t/; P.t//; B.x0; X0/ have nonzero centers p.t/, then
all the previous relations hold, with centers changed from 0 to x0.t/, where

Px0 D B.t/p.t/; x.t0/ D x0;
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so that E.0; XC.£; pŒ��// turns into E.x0.£/; XC.£; pŒ��//.
Theorem 5.4.3. (i) The matrix XC.£; pŒ��/ of the external ellipsoid E.x0.£/;

XC.£; pŒ��// that ensures inclusion (5.80) satisfies the differential equation and
initial condition (5.86).

(ii) The ellipsoid E.x0.£/; XC.£; pŒ��// ensures the equality (5.82) (E.x0.£/;

XC.£; pŒ��// touches set X Œ£� of (5.80) along direction l), if parameters pŒ��
are selected as in (5.83) and �j .t/ are defined for all t 2 Œt0; £�, with �

.0/

k ¤ 0.
Then E.x0.£/; XC.£; pŒ��// is nondegenerate for any l .

(iii) In order that E.x0.£/; XC.£; pŒ��// would be nondegenerate for all l (with box
B.x0; X0/ D fx0g being a singleton), it suffices that functions T .t/B.t/e.j /

would be linearly independent on Œt0; t1�.
(iv) In general, for any given –, selecting �

.–/
j .t/; �

.0–/

k similarly to �j .t/; �
.0/

k ,

but with pjj .t/; p
.0/

kk substituted for p
.–/
jj .t/; p

.0–/

kk , one is able to ensure the
inequality (5.84).

We may now proceed with the approximation of reach sets for system (5.12).

5.4.3 Reachability Tubes for Box-Valued Constraints:
External Approximations

Consider system (5.12) under box-valued constraints (5.72). Its reach set will be
X �Œt � D G.t; t0/X Œt �; where

X Œt � D B.x0; X0/ C
tZ

t0

G.t0; s/B.s/B.u0.s/; P.s//ds: (5.87)

Let us first apply the results of the previous section to the approximation of X Œt �.
Taking T .s/ D G.t0; s/; T0 D I , we have

X Œt � 	 E.G.t0; t/x0.t/; XCŒt �//;

where

PXCŒt � D
� mX

j D1

�j .t/

�
XCŒt � C

mX
j D1

��1
j .£/G.t0; t/B.t/Qjj .t/B 0.t/G0.t0; t/;

(5.88)
with initial condition

XCŒt0� D
nX

kD1

.�
.0/

k /�1X0
kk; (5.89)
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and with x0.t/ evolving due to equation

Px0 D A.t/x0 C B.t/u0.t/; x.t0/ D x0: (5.90)

Further on, denoting X�CŒt � D G.t; t0/XCŒt �G0.t; t0/, we obtain

X �CŒt � 	 E.x0.t/; G.t; t0/XCŒt �G0.t; t0// D E.x0.t/; X�CŒt �/; (5.91)

where now X0C D X�CŒt0�

PX�CŒt � D A.t/X�C C X�CA0.t/ C
� mX

j D1

�j .t/

�
XCŒt � C

mX
j D1

��1
j .t/B.t/Qjj .t/B 0.t/:

(5.92)

Theorem 5.4.4. The inclusion (5.91) is true, whatever be the parameters
�j .t/ > 0; �k > 0 of Eq. (5.92).

Let us now presume that Assumption 3.3.1 of Chap. 3 is fulfilled, so that vector
function l.t/ along which we would like to ensure the tightness property is taken as
l.t/ D G.t0; t/l; l 2 Rn. Then, following the schemes of Sect. 3.8 of Chap. 3, we
come to the next results.

Theorem 5.4.5. Under Assumption 3.3.1 of Chap. 3, in order that equality

¡.l jX Œt �/ D ¡.l jE.x0.t/; XC.t; pŒ��//

would be true for a given “direction” l , the external ellipsoids E.x0.t/; XC.t; pŒ��//
should be taken with

�j .t/ D hl; G.t0; t/B.t/Qjj .t/B 0.t/G0.t0; t/li1=2

hl; X�CŒt �li1=2
; (5.93)

X�0C D
� nX

kD1

�kjlkj
�� nX

kD1

.�kjlkj/�1X0
kk

�
; (5.94)

provided �j .t/ > 0 almost everywhere and jlkj > 0; k D f1; : : : ; mg.
Otherwise, the ellipsoids E.x0.t/; XC.t; pŒ��// have to be taken for any given

– > 0 with parameters

�–
j .t/ D hl; G.t0; t/B.t/Qjj .t/B 0.t/G0.t0; t/li1=2

hl; X�CŒt �li1=2 C –jjl jj ; (5.95)

X�0–C D
� nX

kD1

�kjlkj C –jjl jj
�� mX

j D1

.�j jlj j/�1X0
jj

�
; (5.96)
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instead of �j .t/; X�0C . The inequality

¡.l jE.x0.t/; XC.t; pŒ��/// � ¡.l jX Œt �/ � –jjl jj
will then be true.

The exact reach set X �Œt � is the sum of two sets:

X �Œt � D X �
0 Œt � C X �

u Œt �;

where X �
0 Œt � D G.t; t0/B.x0; X0/ is a (nonrectangular) box and

X �
u Œt � D

tZ

t0

G.t; s/B.s/B.u0; P.s//ds;

is a convex compact set. Set X �
0 Œt � cannot be exactly approximated by nondegenerate

ellipsoids (see Fig. 5.13), while set X �
u Œt � may be represented exactly by nonde-

generate ellipsoids under condition (iii) of Theorem 5.4.3. Let us reformulate this
condition.

Theorem 5.4.6. In order that for any l 2 Rn an equality

¡.l jX �
u Œt �/ D ¡.l jE.0; X�CŒt �//

would be possible for an appropriately selected ellipsoid E.0; X�CŒt �/, it is sufficient
that the pair fA.t/; ekg would be completely controllable for any k D 1; : : : ; m.
Then X�CŒt � will be correctly defined when described by Eq. (5.92), with parameters
��

j .t/ and initial condition X�CŒt0� D X�0C D 0; selected due to (5.93), (5.94).

This follows from the definition of complete controllability (see Sect. 1.3). Under
such condition the boundary of set X�CŒt � will have no faces (“platforms”) and the
set can be totally described by “tight” ellipsoids, as in Chap. 3, Sects. 3.7 and 3.9
(see Fig. 3.1).

Finally, a parametric presentation of set X �Œt �, similar to (5.92), (5.93) can be
produced. Then

x�.t/ D x0.t/ C X�CŒt �l�hl�; X�CŒt �l�i1=2; (5.97)

with

x�.t0/ D x0 C X0Clhl; X0Cli1=2; l�.t/ D G.t0; t//0l (5.98)

with either �j .t/; �0
k or �–

j .t/; �
.0–/

k selected as indicated in Theorem 5.4.5. This
results in an array of external ellipsoids of either type E.x0.t/; X�CŒ£�/ which yields
an equality similar to (5.82), namely

¡.l� j X Œ£�/ D ¡.l� j E.x0; X�CŒ£�/ D hl�; x�.£/i; (5.99)
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or type E.x0.t/; X�–C Œt �/, which yields

¡.l�jE.0; X�C.£; pŒ��// � ¡.l� j X Œ£�/ � –jjl�jj (5.100)

similar to (5.84). Recall that here

¡.l� j X Œ£�/ D ¡.l�jB.0; T0X
0// �

Z £

t0

¡.l�jB.0; T .t/B.t/P.t///dt

In Figs. 5.13 and 5.14, we return to Example 3.6 of Chap. 3. Here external
ellipsoidal approximations are used to construct reachability sets emanated from
a box X 0 D X Œt0� D fx W jxi j � 1; i D 1; 2g rather than from an ellipsoid,
as in Chap. 3, Sect. 3.3. Calculations are made due to relations (5.90), (5.92), and
Theorems 5.4.4, 5.4.5, with m D 1; n D 2:9

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

0

5
t = 0.5

x1

x2

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

0

5
t = 1

x1

x2

Fig. 5.13 Approximations of reachability sets emanating from a box

9Illustrations to this example were worked out by M. Kirillin.
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Fig. 5.14 Trajectory tube emanating from a box

5.4.4 Reach Tubes for Box-Valued Constraints: Internal
Approximations

Following Remark 5.4.1, we recall that the results of Chap. 3, Sects. 3.2–3.4, 3.7,
and 3.8 are all also true for degenerate ellipsoids. We may therefore directly apply
them to box-valued constraints

P .t/ D B.u0.t/; P.t//; X 0 D B.x0; X0/;

using relations (1.37), in view of inclusions

B.u0.t/; P.t// D
mX

j D1

E.u0.t/; Qii .t//; B.x0; X0/ D
nX

kD1

E.x0; Xkk/;

where

Qii .t/ D e.i/e.i/0

qii ; qi i D �2
i ; X0

kk D e.k/e.k/0

x0
kk; x0

kk D �2
k;

and e.i/; e.k/ are unit orths in the respective spaces Rm;Rn. This leads to the
following statements.
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Theorem 5.4.7. (i) An ellipsoid E.x0.t/; X�.t// that satisfies relations

X�.t/ D Y 0.t/Y.t/; Y 0.t/ D G.t; t0/X�.t/; (5.101)

where

X��.t/ D
 

nX
kD1

.X0
kk/1=2S 0

0k C
tZ

t0

nX
j D1

G.t0; s/.B.s/Qjj .s/B 0.s//1=2S 0
j .s/ds

!

and S0k; Sj are any orthogonal matrices of dimensions n � n; .S0kS 0
0kDI;

SSj S 0
j D I / is an internal ellipsoidal approximation for the reach set X Œt �

of (5.87).
(ii) In order that for a given “direction” l the equality

¡.l jX Œt �/ D ¡.l jE.x0.t/; X��.t///

would be true, it is necessary an sufficient that there would exist a vector d 2
Rn, such that the equalities

S0kX
1=2

kk l D œ0kd; Sj .B.s/Qjj .s/B 0.s//1=2G0.t0; s/l D œj .s/d; (5.102)

k D 1; : : : ; n; j D 1; : : : ; m; s 2 Œt0; t �;

would be true for some scalars œ0k > 0 œj .s/ > 0.
(iii) The function x0.t/ is the same as for external approximations, and is given

by (5.90).

We may now express relations for X�.t/ through differential equations similar
to those of Sect. 3.9.

Differentiating X�.t/ and using the previous relations, we come to the
proposition.

Theorem 5.4.8. Matrix X�.t/ of the ellipsoid

E.x0.t/; X�.t// 	 X Œt �;

satisfies the equation

PX�� D A.t/X� C X�A0.t/ C Y 0.t/S 0.t/.B.t/Qjj .t/B 0.t//1=2C

C.B.t/Qjj .t/B 0.t//1=2S.t/Y.t/
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with initial condition

X�.t0/ D
� nX

kD1

.X0
kk/1=2S 0

0k

�0� nX
kD1

.X0
kk/1=2S 0

0k

�
;

where

PY 0 D A.t/Y 0 C
mX

j D1

.B.t/Qjj B 0.t//1=2S 0
j .t/;

Y 0.t0/ D
nX

kD1

.X0
kk/1=2S 0

0k:

and S0k; Sj are orthogonal matrices of dimensions n�n, (S0kS 0
0k D I; Sj S 0

j D I ).

In order that equality ¡.l jX Œt �/ D ¡.l jE.x0.t/; X��.t/// would be true, it is
necessary and sufficient that relations of type (5.102) would be satisfied.

5.5 Ellipsoidal Methods for Zonotopes

5.5.1 Zonotopes

In this section we consider hard bounds on control u and initial set X.t0/ D X0 in
the form of symmetric polyhedrons also known as zonotopes, denoted here as

P .t/ D Z.p.t/; P.t//; X 0 D Z.x0; X0/ (5.103)

and described as follows.

Definition 5.5.1. A zonotope is understood to be a symmetric polyhedron of type

Z.p; P / D fx W x D p C
mX

iD1

pi ’i ; ’i 2 Œ�1; 1�g:

where p 2 Rm is its center and P D fp1; : : : ; pmg is an array of m vectors
(“directions”) pi which define its configuration.
The support function for Z is

¡.l jZ.p; P // D hp; li C
mX

iD1

jhpi ; lij:

If the interior int Z.p; P / 6D ;, then zonotope Z.p; P / is said to be nondegenerate.
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Fig. 5.15 Hard bounds on control u and initial set X0 for Example 5.9

Examples of zonotopes used below in Example 5.9 are given in Fig. 5.15. Note
that a particular case for the zonotope is a box which is initially defined by a set of
orthogonal vectors pi .

Definition 5.5.2. An ellipsoid E.q; Q/ with support function

¡.l jE.q; Q// D hl; qi C hl; Qli1=2:

is said to be degenerate if its matrix Q D Q0 � 0 is degenerate.

Similar to Sect. 3.6 we observe that zonotope Z.0; P / may be presented as the
sum of m degenerate ellipsoids, namely, Z.0; P / D Pm

iD1 E.0; Pii /, where Pii D
pi pi 0

; i D 1; : : : ; m:

Then the hard bounds on u; x.t0/ may be described as

u.t/ 2 p.t/ C
mpX

j D1

E.0; Pjj .t//; x.t0/ 2 x0 C
m0X
iD1

E.0; X0
i i /; (5.104)

Here Pjj .t/ D pj .t/pj 0

.t/, X0
ii D xi xi 0

In order to calculate reachability sets for zonotopes one may follow the schemes
of the previous section as taken for boxes. These may be repeated for zonotopes as a
useful exercise. We formulate the main task beginning with internal approximation.
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5.5.2 Internal Ellipsoidal Tubes for a Zonotope

Problem 5.5.1. (i) For the reachability set X Œt � D X .t; t0; X 0/ of system (5.12),
under constraints 5.103 specify the family E D fE�g of internal ellipsoidal
approximations such that

conv

� [
E

E� j E� 2 E
�

D X Œt �:

(ii) Indicate a subfamily of tight recurrent approximations E l�

� Œt � 	 X Œt �, that touch
the reachability set along “good” curves” ensuring equalities

¡.l�.t/jE l�

� Œt �/ D ¡.l�.t/jX Œt �/; conv
[
l�

E l�

� Œt � D X Œt �:

Recall that such a tight approximation is unique if it is selected among the class
E�, in the sense of Definitions 3.2.3, 3.7.3 of Chap. 3. Namely E�Œt � is unique if for
any ellipsoid E that satisfies E�Œt � 	 E 	 X Œt � it follows that E D E�Œt �:

Following the reasoning of Sects. 5.4.3 and 5.4.4, but applying it our zonotopes
Z.p.t/; P.t//; Z.x0; X0/; we come to a conclusion similar to Theorem 5.4.8.

Theorem 5.5.1. (i) The reachability set X Œt � allows to have the following internal
approximation

E.x�.t/; X�.t// 	 G.t; t0/Z.x0; X0/C
Z t

t0

G.t; s/B.s/Z.p.s/; P.s//ds D X Œt �;

where X�.t/ D .X��.t//0X��.t/ and x�.t/ satisfy relations

X��.t/D
m0X
iD1

S0;i .X
0
i i /

1
2 G0.t; t0/C

Z t

t0

mpX
j D1

Sj .s/.B.s/Pjj .s/B 0.s//
1
2 G0.t; s/ds;

(5.105)

x�.t/ D G.t; t0/x0 C
Z t

t0

G.t; s/B.s/p.s/ds; (5.106)

for any orthogonal matrices S0;i , i D 1; : : : ; m0; and continuous orthogonal-
valued matrix functions Sj .t/, j D 1; : : : ; mp .

(ii) At fixed time t the ellipsoid E.x�.t/; X�.t// touches the surface of the
reachability set X .t; t0; Z.x0; X0// along direction l.t/ D l�.t/; l.t0/ D l0,
namely,

¡.l�jX .t; t0; Z.x0; X0/// D ¡.l�jE.x�.t/; X�.t/// D hl�; x�.t/i C hl�; X�.t/l�i1=2;

(5.107)
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if only the time-varying parameters St
0;i , St

j .�/ are selected such that

St
0;i .X

0
i i /

1
2 G0.t; t0/l0 D œt

0;j pt ; S t
j .s/.B.s/Pjj .s/B 0.s//

1
2 G0.t; s/l� D œt

j .s/pt ;

(5.108)

s 2 Œt0; t �; i D 1; : : : ; m0; j D 1; : : : ; mp;

for certain scalar functions œt
j .�/ > 0; œt

0;j > 0; j D 1; : : : ; mp; and
functions pt 2 Rn, pt ¤ 0.

Differentiating relations (5.105), (5.106), and applying equality

PX�.£/ D . PX��.£//0X��.£/ C .X��.£//0 PX��.£/;

we come to differential equations for the dynamics of approximating ellipsoids
E.x�.t/; X�.t//:

8̂
ˆ̂<
ˆ̂̂:

PX�.£/ D A.£/X�.£/ C X�.£/A0.£/C
C.X�

�
.£//0.

Pmp

j D1 St
j .£/.B.£/Pjj .£/B 0.£//

1
2 / C .

Pmp

j D1.B.£/Pjj .£/B 0.£//
1
2 St

j
0

.£//X�

�
.£/;

X�.t0/ D .
Pm0

iD1 St
0;i .X

0
i i /

1
2 /0.

Pm0
iD1 St

0;i .X
0
i i /

1
2 /;

Px�.£/ D A.t/x�.£/ C B.£/p.£/; x�.t0/ D x0:

(5.109)

Among these ellipsoidal-valued tubes we now have to specify those that ensure
tight approximations.

We now as usually (see Sects. 3.3 and 3.9) select a “good” curve as a solution to
equation

Pl�.t/ D �A0.t/l�.t/; l�.t0/ D l:0

for a certain direction l0, so that l�.t/ D G0.t0; t/l0:

For curve l�.t/ we then find the ellipsoidal tube E.x�.t/; X��.t// designed for
l D l�.t/, such that for each t � t0 we have the equality

¡.l�.t/jX .t; t0; Z.x0; X0// D ¡.l�.t/jE.x�.t/; X��.t// D hl�.t/; x�.t/i:
(5.110)

In order to satisfy this equality it is necessary to ensure, due to Theorem 5.5.1 (ii),
that orthogonal matrices St

0;i , St
j .�/, i D 1; : : : ; m0, j D 1; : : : ; mp would satisfy

conditions (5.108) for certain œt
0;i > 0; œt

j .�/ > 0; pt 2 Rn, pt ¤ 0. Substituting
in these conditions l�.t/, we arrive at

St
0;i .X

0
i i /

1
2 l0 D œt

0;i p
t ; S t

j .s/B.s/.Pjj .s//
1
2 l�.s/ D œt

j .s/pt ; (5.111)

s 2 Œt0; t �; i D 1; : : : ; m0; j D 1; : : : ; mp:
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Note that for a good curve l�.s/ functions St
0;i ; S t

j .s/; œt
0;i ; œt

j .s/; pt ; the last
relations do not depend on t , so further on the upper index t or the functions may be
deleted.

Summarizing the above, we conclude the following

Theorem 5.5.2. (i) For the reachability tube X Œt � D X .t; t0; Z.x0/; X0/ there
exists an internal approximation

E.x�.t/; X�.t// 	 X .t; t0; Z.x0; X0//; t � t0;

where X�.t/ D .X��.t//0.X��.t// and x�.t/ satisfy differential equa-
tions (5.109) and S0;i , Sj .�/, i D 1; : : : ; m0; j D 1; : : : ; mp; are orthogonal
matrices that evolve continuously in time.

(ii) The ellipsoidal tube E.x�.t/; X��.t// touches the boundary @X Œt � of tube X Œt �

from the inside, along direction l�.t/ D G0.t0; t/l0; ensuring equalities (5.107)
whenever relations (5.111) turn out to be true.

The last theorem gives the solution to Problem 5.5.1 described through recur-
rent relations. The internal ellipsoidal tube fE.x�.t/; X��.t//; t � t0g touches
the reachability tube fX .t; t0; M .x0; X0//; t � t0g along the curve l�.t/ D
G0.t0; t/l0; ensuring for any l0 the equalities

.l�.t/; x.l�/.t// D ¡.l�.t/jX Œt �/ D ¡.l�.t/jE.x�.t/; X��.t///; (5.112)

where

x.l�/.t/ D x�.t/ C X��.t/l�.hl�; X��.t/l�i/�1=2; (5.113)

These relations represent the maximum principle and the ellipsoidal maximal
principle which hold simultaneously at x D x.l�/.t/; l.t/ D l�.t/: They also
indicate that at each time t point x.l�/.t// lies on the support plane to X Œt � generated
by vector l�.t/ with equalities (5.112) reached at x.l�/.t/:

Remark 5.5.1. (a) Note that in formula (5.113) vector x.l�/.t/ does not depend on
the length of l�.t/. Then, denoting x.l�/.t/ D xŒt; l�.t/�; we may consider the
surface „�Œt; l0� D xŒt; l�.t/�; where l�.t/ depends on l0, which together with
t serve as a parameter of dimension n C 1. Hence, for t� given, we have the
n-dimensional surface

„�Œt�; �� D
[

fxŒt�; l0� j kl0k D 1g

and

„Œt�; �� D @X Œt�� D
[

fxŒt�; l0� j kl0k D 1g;
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where @X is the boundary of set X . Then X Œt � D convfxŒt�; l0� j kl0k D 1g is
the convex hull of „�Œt�; ��.

(b) Also note that in Eqs. (5.109), (5.111) matrix X��.t/ depends on the selection of
good curve l D l�.t/ and was marked as X��.t/, while x�.t/ does not depend
on l� and is the same for all internal and external ellipsoids within classes
E�; EC: Now, if we take a finite number k of good directions l�

i .t /; i D
1; : : : ; k; then, for a selected l D l�

i .t /, we shall mark matrix X��.t/ D Xi�.t/.
We further introduce set „kŒt � D [k

iD1E.x�.t; Xi�.t/; � � X Œt � which is a
“star-shaped ” set and such that its convex hull convf„kŒt �g � X Œt Œ is a convex
internal approximation of X Œt �: Sets „kŒt � may be effectively used in related
numerical procedures.

Example 5.9. Consider system

� Px1 D x2 C u1

Px2 D �¨2x1 C u2

;

u 2 Z.p; P /

x.0/ 2 Z.x0; X0/

where setsZ.x0; X0/, Z.p; P / are shown in Fig. 5.15.
In Fig. 5.16 we demonstrate the exact reachability tube with one of its tight

internal ellipsoidal approximations. This tube was constructed as the union of an
array of such tight approximations. In Fig. 5.17 we depict a reachability set for a
zonotope with some of its tight internal ellipsoids at time t D 1.10

5.5.3 External Ellipsoidal Tubes for a Zonotope

Problem 5.5.2. (i) For the reachability set X Œt � D X .t; t0; X 0/ of system (5.12),
under constraints 5.103 specify the family E D fECg of external ellipsoidal
approximations such that for a given © > 0 we have

h.X Œt �;
\

fEC j EC 2 Eg/ � ©; X Œt � 	
\

fEC j EC 2 Eg:

(ii) Indicate a subfamily of tight recurrent approximations E lCŒt � 
 X Œt �, that touch
the reachability set along “good” curves ensuring equality

¡.l.t/jE lCŒt �/ � ¡.l.t/jX Œt �/ C ©kl.t/k; h.X Œt �;
\

klk�1

E lCŒt �/ � ©:

10Examples illustrated in Figs. 5.16, 5.17, 5.18, and 5.19 of this section were worked out by M.
Kirillin.
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Fig. 5.16 Reach tube and one tight internal approximation

Fig. 5.17 The reachability set with its internal approximations
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Fig. 5.18 Reachability tube X z
© Œt � with one tight external approximation

Fig. 5.19 Reachability set with its tight external approximations
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To solve this problem we first define some neighborhoods of a zonotope.

Definition 5.5.3. For a zonotope Z.0; P / D Pm
iD1 E.0; Pii /; with degenerate

matrices Pii denote
P D Pm

iD1 Pii and further

P ©
ii D Pii C ©

m
I; P © D

mX
iD1

P ©
i i D P C ©I:

Then the ©-neighborhood of Z.0; P / is defined as

Z©.0; P / D Z.0; P ©/ D
mX

iD1

E.0; P ©
i i / � Z.0; P /

Here with X0 D Pm
iD1 X0

i i ; X0 C ©I D X 0©; we have the ©-neighborhood of
Z.0; X0/ denoted as

Z©.0; X0/ D Z.0; X0©/ D
mX

iD1

E.0; X0©
i i / � Z.0; X0/

To approximate reachability sets X Œt � D X .t; t0; Z0/ we introduce constraints on
u; x.t0/

u.t/ 2 P© D Z.p.t/; P ©.t//; x.t0/ 2 X 0
© D Z.x0; X0©/ (5.114)

Then the reachability set of system (5.12) under such constraints will be
denoted as

X z
© Œt � D x�.t/ C G.t; t0/Z.0; X0©/ C

Z t

t0

G.t; s/B.s/Z.0; P ©.s//ds; (5.115)

x�.t/ D G.t; t0/x0 C
Z t

t0

G.t; s/B.s/p.s/ds: (5.116)

Exact reach set X Œt � will be defined through (5.115) where X0©; P ©.s/ are
substituted by X0; P.s/.

Lemma 5.5.1. For any © > 0 we have
(i) the inclusion X Œt � � X z

© Œt �,
(ii) the inequality h.X Œt �; X z

© Œt �/ � k.t/©; where

k.t/ D sup

�
kG0.t; t0/lk1=2 C

Z t

t0

kB.s/G0.t; s/lk1=2ds

ˇ̌
ˇ̌ l 2 B.0/

�
:
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Exercise 5.5.1. Prove Lemma 5.5.1

We now calculate the external ellipsoidal ©-approximation to X z
© Œt �:

Remark 5.5.2. Since Z.p; P / D p C Z.0; P /; the centers of the zonotopes are not
involved in ellipsoidal approximation which is the same as when x0 D 0; p.t/ D 0,
which also yields x.t/ D 0. The approximation is then the sum of x�.t/ and the
external ECŒt � under x.t/ D 0:

Using schemes of Sect. 3.3 with those of Sect. 5.4 of this chapter, we come to the
next assertion11

Theorem 5.5.3. (i) For the ©-neighborhoods of X Œt � there exist an external ellip-
soidal approximation

X Œt � 	 X©Œt �
z 	 E.x�.t/; X©C.t//; (5.117)

where x�.t/, is given by (5.116) and X©C.t/ satisfies equations

8<
:

PX©C.t/ D A.t/X©C.t/ C X©CA0.t/C
CPmp

j D1 �j .t/X©C.t/ CPmp

j D1.�j .t//�1B.t/P ©
jj .t/B 0.t/;

X©C.t0/ D .
Pm0

iD1 p0;i /.
Pm0

iD1.p0;i /
�1X0©

i i /;

(5.118)

for any positive p0;i > 0, i D 1; : : : ; m0; and any continuous functions �j .t/ >

0, j D 1; : : : ; mp .
(ii) At each time t ellipsoid E.x�.t/; X©C.t// touches the ©-neighborhood X z

© Œt � along
direction l�.t/ D G0.t0; t/l0, so that relation

¡.l�.t/jX z
© Œt �/ D ¡.l�.t/jE.x�.t/; X©C.t//; t � t0; (5.119)

is true as long as the next conditions are satisfied

p0;i D hl; X0©
i i li 1

2 ; i D 1; : : : ; m0;

�j .s/ D hl�.s/; B.s/P ©
jj .s/B 0.s/l�.s/i1=2; s 2 Œt0; t �; j D 1; : : : ; mp:

Relation (5.119) yields the next property: set X z
© Œt � may be presented as the

following intersection of approximating ellipsoids, namely

X z
© Œt � D \fE.x�.t/; X©C.t// j p0;i > 0; �j .�/ > 0g: (5.120)

11Note that designing external approximations of reachability sets X Œt � we have to apply them
to nondegenerate ©-neighborhoods of ellipsoids Ei i instead of exact Ei i , as in Sect. 5.4.2. This is
because all ellipsoids Ei i are degenerate, and their approximations may also turn out to be such. But
since we need all externals to be nondegenerate, this will be guaranteed by applying our scheme to
nondegenerate neighborhoods of Ei i .
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For a fixed vector l0 2 Rn let x�
l .t / be the related good curve along which

ellipsoid E.x�.t/; X©C.t// touches the tube X z
© Œt �; ensuring equalities

hl�.t/; x�
l .t /i D ¡.l�.t/jX z

© Œt �/ D ¡.l�.t/jE.x�.t/; X©C.t///: (5.121)

Then point x�
l .t / lies on the boundaries of both E.x�.t/; X©C.t/// and X z

© Œt �,
satisfying an ellipsoidal maximum principle

hl�.t/; x�
l .t /i D maxfhl�.t/; xi j x 2 E.x�.t/; X©C.t//g; (5.122)

along trajectory

x�
l .t / D x�.t/ C X©C.t/l�.t/

hl�.t/; X©C.t/l�.t/i1=2
:

Remark 5.5.3. Similar to Remark 5.5.1(a) we may introduce a two-parameter
surface „Œt; l0� but with array of functions fl�Œt �g calculated for X©.t/ rather than
for X Œt �, leading to some similar conclusions. However, one of the differences is that
with number of ellipsoids that form zonotope Z.x0; X0/ being m0 < n, the matrix

X0 D Pm0

iD1 X0
i i will be degenerate, and in Rn set Z.x0; X0/ will be a “zonotopic

cylinder.”

Example 5.10. Is the same as Example 5.9. Here Fig. 5.18 indicates the
©-neighborhood X z

© Œt � for the exact zonotopic reachability tube X Œt � calculated as
an intersection of its tight external approximations one of which is shown touching
X z

© Œt � along a good curvel�.t/. Figure 5.19 demonstrates the zonotopic cross-section
of the ©-neighborhood X z

© Œt � at fixed time t D 1; together with an array of its tight
ellipsoidal approximations.



Chapter 6
Impulse Controls and Double Constraints

Abstract In the first section of this chapter we deal with the problem of feedback
impulse control in the class of generalized inputs that may involve delta functions
and discontinuous trajectories in the state space. Such feedback controls are not
physically realizable. The second section thus treats the problem of feedback control
under double constraints: both hard bounds and integral bounds. Such solutions are
then used for approximating impulse controls by bounded “ordinary” functions.

Keywords Bounded variation • Impulsive inputs • •-Function • Closed-loop
control • Value function • Variational inequality • Double constraints

Control inputs in the form of impulses of the •-function type have been studied since
the conception of control theory, being motivated by designing space trajectories,
automation, biomedical issues, and also problems in economics (see [23, 42, 43]).
However, impulse control problems were initially studied mostly as open-loop
solutions, [120, 219] with detours to closed-loop strategies being rather rare [23].
In the first section we describe the Dynamic Programming approach to problems
of feedback impulse control for any finite-dimensional linear system. This is
reached through variational inequalities that propagate HJB techniques to impulse
control. So, we begin with problems of open-loop control, then concentrate on
closed-loop solutions emphasizing their specifics and the type of HJB equation
that describes them. The solutions arrive as •-functions. However such functions
are ideal mathematical elements which require physically realizable approximation
by “ordinary” functions. This is done in the second section, where we solve the
problem with double constraints—joint hard instantaneous and soft L1—integral
bounds on the controls. The achieved solution then yields realizable approximations
of impulsive feedback inputs. The contents of this chapter rely on investigations
[55, 152, 154].
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254 6 Impulse Controls and Double Constraints

6.1 The Problem of Impulse Controls

Considering impulse control problems in finite time, it could at first seem reason-
able, say, in system (1.2), to minimize the norm ku.�/g of the control, taking it in the
space L1. But due to the specifics of this space the minimum may not be attained
within its elements. It is therefore natural to apply the next scheme.

Consider the following generalization of the Mayer-Bolza problem in classical
Calculus of Variations (see [33]).

Problem 6.1.1. Minimize the functional

J.u.�// D VarU.�/ C ®.x.ª C 0// ! inf; (6.1)

over controls U.�/, due to system

dx.t/ D A.t/x.t/dt C B.t/dU.t/; t 2 Œt0; ª�; (6.2)

with continuous coefficients A.t/; B.t/, under restriction

x.t0 � 0/ D x0: (6.3)

Here ®.x/ is a convex function, VarU.�/ stands for the total variation of function
U.�/ over the interval Œt0; ªC0�, where U.�/ 2 VpŒt0; ª� is the space of vector-valued
functions of bounded variation. The generalized control U.t/ attains its values in Rp

which means that each component Ui .t/; .i D 1; : : : ; p/; assumed left-continuous,
is a function of bounded variation on Œt0; ª C 0� and B.t/ 2 Rn�p are taken to be
continuous. The minimum over U.�/ will now be attained.1

Equation (6.2) with condition (6.3) is a symbolic relation for

x.t/ D G.t; t0/x0 C
Z t

t0

G.t; Ÿ/B.Ÿ/dU.Ÿ/; (6.4)

where the last term in the right-hand side is a Stieltjes or Lebesgue–Stieltjes integral
(see [234]). The terminal time is fixed and the terminal cost function ®.x/ W Rn !
R [ f1g is closed and convex.

A special selection of ®.x/ D I .x jx.1// yields

Problem 6.1.2. Steer x.t/ from point x0 D x.t0/ to point x.1/ D x.ª/ with
minimal variation of control U.t/:

VarfU.t/ j t 2 Œt0; ª C 0�g D VarU.�/ ! inf; (6.5)

1 In this book we give a concise description of impulse controls that are confined only to
•-functions, but not their derivatives. A general theory of impulse control that also involves
derivatives of •-functions is beyond the scope of this book and is presented in [152, 154]. Such
theory leads to the description of “fast” or “ultra fast” control solutions achieved on a quantum
level and in “nano”-time.
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due to system (6.3), under boundary conditions

x.t0 � 0/ D x.0/; x.ª C 0/ D x.1/: (6.6)

Our main interest in this book lies in closed-loop control, but prior to that we start
with open-loop solutions presenting results in terms of the above. Such type of
problems in terms of the moment problem was indicated in Sect. 1.3 and addressed
in detail in [120, 219].

6.1.1 Open-Loop Impulse Control: The Value Function

Define

V.t0; x0/ D minfJ.u.�// j x.t0 � 0/ D x.0/g

as the value function for Problem 6.1.1. We shall also use notation V.t0; x0/ D
V.t0; x j ª C 0; ®.�//; emphasizing the dependence on fª; ®.�/g:

Let us start by minimizing V1.t0; x0/ D V.t0; x0 j ª; I .� j x.1///: Then we first
find conditions for the solvability of boundary-value problem (6.6) under constraint
VarU.�/ � �; with � given.

Since

hl; x.ª C 0/i D hl; x.1/i �

hl; G.ª; t0/x0i C max

( Z ªC0

t0

hl; G.ª; Ÿ/B.Ÿ/dU.Ÿ/i j VarU.�/ � �

)
;

and since the conjugate space for vector-valued continuous functions C pŒt0; ª� is
VpŒt0; ª�; then treating functions B 0.t/G.ª; t/l as elements of C pŒt0; ª�; we have

hl; x.1/i � hl; G.ª; t0/x0i C �kB 0.�/G0.ª; �/lkC Œt0;ª�; (6.7)

whatever be l 2 Rn:

Here

kB 0.�/G0.ª; �/lkC Œt0;ª� D max
t

fkB 0.t/G0.ª; t/lk j t 2 Œt0; ª�g D klkV ;

and klk in the braces is the Euclidean norm. We further drop the upper index p in
C p; Vp while keeping the dimension p.

Denote c.t0; x.1// D x.1/ � G.ª; t0/x.0/. Moving the first term in the right-hand
side of (6.7) to the left, then dividing both sides by kB 0.�/G0.ª; �/lkC Œt0;ª�, we come
to the next proposition.
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Theorem 6.1.1. Problem 6.2 of steering x.t/ from x0 D x.t0/ to x.1/ D x.ª C 0/

under constraint VarU.�jŒt0; ª�/ � � is solvable iff (6.7) is true for all l 2 Rn:

The optimal control U 0.t/ for this problem is of minimal variation

VarU 0.�/ D �0 D sup

(
hl; c.t0; x.1//i

kB 0.�/G0.ª; �/lkC Œt0;ª�

ˇ̌
ˇ̌
ˇ l 2 Rn;

)
: (6.8)

Note that the criteria of controllability in the class of functions U.�/ 2 VpŒt0; ª�

for system (6.2) are the same as in Sect. 1.3.

Lemma 6.1.1. In (6.8) the maximum (supremum over l) is attainable if system (6.2)
is strongly completely controllable. (Assumption 1.5.2 is true.)

Indeed, if �0 6D 0 and Assumption 1.5.2 requiring strong complete controllability
is true, then klkV defines a finite-dimensional norm in Rn (check this property (!))
and (6.8) is equivalent to

�0 D maxfhl; x.1/ � G.ª; t0/x0i j klkV � 1g D kx.1/ � G.ª; t0/x0k�
V ; (6.9)

where kxk�
V is the finite-dimensional norm conjugate to klkV :

Exercise 6.1.1. Find the norm kxk�
V :

Remark 6.1.1. Note that under Assumption 1.5.2 we have �0 D �0.t0; x0I ª; x.1//

< 1:

Let l0 be the maximizer in (6.9). Then from (6.7), (6.8) we observe

�0 D max

( Z ªC0

t0

hl0; G.ª; Ÿ/B.Ÿ/dU.Ÿ/i
ˇ̌
ˇ̌
ˇ VarU.�/ � �0

)
D

D
Z ªC0

t0

hl0; G.ª; Ÿ/B.Ÿ/dU 0.Ÿ/i: (6.10)

This is the maximum principle for impulse controls which is given in integral
form.

Denote §0ŒŸ� D §.Ÿ; ª; l/ D l 0G.ª; Ÿ/: Then we can rewrite (6.10) as

�0 D max

( Z ªC0

t0

§0ŒŸ�B.Ÿ/dU.Ÿ/

ˇ̌
ˇ̌
ˇ VarU.�/ � �0

)
D
Z ªC0

t0

§0ŒŸ�B.Ÿ/dU 0.Ÿ/:

(6.11)

Theorem 6.1.2. The optimal impulse control U 0.�/ that minimizes variation
VarU.�/ satisfies the maximum principle (6.11) under l D l0—the maximizer
of (6.9). With �0 > 0 and under Assumption 1.5.2 it is also sufficient for the
optimality of U 0.�/:
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The proof of sufficiency is similar to Sect. 1.5.

Remark 6.1.2. The optimal control U 0.�/ for Problem 6.1.1 may not be unique.

Denote T .l/ D arg maxt fkB 0.t/G0.ª; t/lk j t 2 Œt0; ª�g which is the set of
points £ where

kB 0.£/G0.ª; £/lk D max
t

fkB 0.t/G0.ª; t/lk j t 2 Œt0; ª�g:

Lemma 6.1.2. (i) Among optimal controls U 0.�/ there always exists one of type

U.t/ W
�

U.t/ D const; £i�1 < t � £i ; i D 1; m C 1;

U.£i C 0/ � U.£i / D ’i ; i D 1; m:

where ’ 6D 0 each of the instants £i 2 T .l0/; so that

dU 0Œt �

dt
D

mX
iD1

p.i/•.t � £i /; (6.12)

where

t0 � £1 < £2 < : : : < £k � ª; p.i/ 2 Rp;

VarU 0.�/ D
mX

iD1

jp.i/j D �0I

(ii) the number of such instants £i is m � n where n is the system dimension.

Exercise 6.1.2. Prove Lemma 6.1.2.2

A particular case arises under scalar control U:

Assumption 6.1.1. Coefficients A; B D const; B D b; jAj 6D 0; rankŒAB;

A2B; : : : ; AnB� D n:

Lemma 6.1.3. Under Assumption 6.1.1 points £i 2 T .l0/ are isolated.

This fact facilitates the calculation of U 0.t/:

Exercise 6.1.3. Prove Lemma 6.1.3.

Example 6.1.1. Consider the motion of a ball which rolls along a planar curve as in
Fig. 6.1. The ball may be controlled by striking it along the direction of the motion

2The proof of this Lemma may be found in [120, 219].
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Fig. 6.1 Motion of a ball
along a planar curve
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with positive or negative impulse (a strike), so as to calm down the motion to a total
stop at given finite time.The problem is to find the total number of strikes with their
intensities and directions.

The equation for the motion of the controlled ball is

Rs C ¨2s D u; (6.13)

where s is the length from the origin along the curve with t 2 Œ0; ™�. The stopping
rule is

�
s.ª/ D 0;

Ps.ª/ D 0:

Exercise 6.1.4. 1. What should be the curve that yields equation of motion without
friction to be (6.13)?

2. Write down the equation of motion for the ball when the curve is a circular arc.

Write down (6.13) as

�
dx1 D x2dt;

dx2 D �¨2x1dt C Udt;
;

where u D dU=dt; VarU � �; t 2 Œ0; �=¨�; x.0/ D Œx0
1 ; x0

2 �0.
Thus we have

A D
�

0 1

�¨2 0

�
; B D

�
0

1

�
;

and the fundamental matrix for the homogeneous system is

G.�=¨; t/ D
� � cos.¨t/ 1

¨
sin.¨t/

�¨ sin.¨t/ � cos.¨t/

�
;
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Hence

G.�=¨; t/B D
�

1
¨

sin.¨t/

� cos.¨t/

�
;

with

x.1/ D x.�=¨/ D
�

0

0

�
; x.0/ D x.0/ D

�
1

0

�
;

Then

c D x.1/ � X.�=¨; 0/x.0/ D
��1

0

�
:

Using (6.9) and making an equivalent substitution l1
¨

! l1; �l2 ! l2, we
come to

�0 D max
l

�l1¨

max
0�t� �

¨

jl1 sin.¨t/ C l2 cos.¨t/j :

Introducing ® D arccos

�
l1=

q
l2
1 C l2

2

�
we get

l1 sin.¨t/ C l2 cos.¨t/ D
q

l2
1 C l2

2 sin.¨t C ®/;

so that

�0 D max
l

�l1¨q
l2
1 C l2

2 max
0�t��=¨

j sin.¨t C ®/j
: (6.14)

Note that the right hand side of (6.14) depends only on the ratio ® D arctg.l2= l1/.
Then, since l1 > 0 is obviously infeasible, we may take l1 D �1, arriving at the
minmax problem of finding

min
l2

q
1 C l2

2 max
0�t��=¨

j sin.¨t C ®/j;

Its solution gives l0
2 D 0, �0 D ¨ with only one extremum t D �=2¨. Then the

desired control is

u D u0 D ’•
�
t � �

2¨

�
:
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The constant ’ D �¨ may be found from condition

hl0; ci D
ªC0Z

t0

l00
G.ª; t/B.t/dU 0.t/;

which follows from (6.9), (6.11).
So we have

�=¨Z

0

sin.¨t/u0dt D �¨;

�=¨Z

0

cos.¨t/u0dt H) ’ sin �=2 D �¨;

The specified control u0 D dU 0=dt ensures VarU.�/ D min : It is also a time-
optimal control for starting point x.0/ and x.1/ D 0 (prove that).

Exercise 6.1.5. 1. Indicate the set of solutions for this example when the time
interval is

�
0; 2�

¨

�
, the criterion is VarU.�/ D min and c is arbitrary.

2. Find the time optimal solution for any starting point ft; xg and terminal point
x.toptimal / D 0.

We now move to solutions in the class of closed-loop (feedback) controls. This
requires us to develop a Dynamic Programming approach within this new class.

6.1.2 Closed-Loop Impulse Control: The HJB Variational
Inequality

Returning to Problem 6.1.1 with arbitrary starting position, we shall look for the
value function V.t; x/; assuming klkV is a norm. (As indicated above this is
ensured if system (6.2) is strongly completely controllable.) Recall that �0 D
�0.t; xI ª; x.1//:

We have

V.t; x/ D

inff�0.t; x I ª; x.1//C®.x.1//g D inffkx.1/ �G.ª; t/�xk�
V C®.x.1// j x.1/ 2 Rng:

(6.15)

Denote

ˆ.x.1// D kc.t; x.1//k�
V C ®.x.1//; c.t; x.1// D x.1/ � G.ª; t/x;
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and suppose inffˆ.x.1//jx.1/ 2 Rng > �1: Then, since kc.t; x.1//k�
V is a norm,

we have

ˆ�.0/ D maxf�ˆ.x.1//jx.1/ 2 Rng < 1:

Hence 0 2 int Domˆ� which indicates that the level sets of ˆ.x/ are compact
(closed and bounded). Then clearly, V.t; x/ < 1; the “infimum” in x.1/ in the
above is attainable (let it be point x�) and can be substituted for “minimum.” This,
together with Lemma 6.1.2 brings us to the next conclusion.

Theorem 6.1.3. With V.t; x/ < 1 there exists a point x� where

minfˆ.x.1//jx.1/ 2 Rng D �0.t; xI ª; x�/ C ®.x�/:

For every starting position ft; xg there exists an open-loop control U 0.�jt; x/

of type (6.12) which steers system (6.1) from ft; xg to fª; x�g thus solving Prob-
lem 6.1.1.

In order to calculate the conjugate of V.t; x/ in the second variable we apply
formula

V.t; x/ D min
x.1/

fmax
l

fhl; G.ª; t/x � x.1/i C ®.x.1// j klkV � 1; x.1/ 2 Rng;

where the min and max are interchangeable (check this property). Changing the
order of these operations and using the definition of convex conjugate functions we
have

V.t; x/ D max
l

min
x.1/

fhl; G.ª; t/x � x.1/i C ®.x.1// j x.1/ 2 Rn; klkV � 1g D

D max
l

fhl; G.ª; t/xi � max
x.1/

fhl; x.1/i � ®.x.1// j x.1/ 2 Rng j klkV � 1g D

D max
l

fhG0.ª; t/l; xi � ®�.l/ � I .l jBV Œt; ª�/g; (6.16)

with

BV Œt; ª� D fl W klkV � 1g and klkV D max
Ÿ

fkB 0.Ÿ/G0.ª; Ÿ/lk j Ÿ 2 Œt; ª�/g;

where klk is the Euclidean norm.
This is a unit ball in Rn whose definition depends on system parameters and the

interval Œt; ª�:

The last formula yields the next result.
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Theorem 6.1.4. The value function V.t; x/ is convex in x and its conjugate in the
second variable is

V �.t; l/ D ®�.G0.t; ª/l/ � I .G0.t; ª/l jBV Œt; ª�/: (6.17)

Exercise 6.1.6. Check whether V ��.t; x/ D V.t; x/:

Exercise 6.1.7. Prove Theorem 6.1.4 without Assumption 1.5.2 on complete con-
trollability of system (6.2). Then klkV will be only a seminorm rather than a norm
in Rn:

Theorem 6.1.5. The value function V.t; x j ª C 0; ®.�// satisfies the principle of
optimality as a semigroup property: for any £ 2 Œt; ª� the next relation is true

V.t; x/ D V.t; x j ª C 0; ®.�// D V.t; x j £; V .£ C 0; �jª C 0; ®.�///: (6.18)

Proof. If at time £ there is no jump, then V.£; x.£// D V.£ C 0; x.£ C 0//. So, by
applying formulas (6.16), (6.17) we have:

V.£; xjª C 0; ®.�// D max
l

fhl; G.ª; £/xi � ®�.l/ � I .l jBV Œ£; ª�/ j l 2 Rng;

V .t; xj£; V .£; �// D max
l

fhl; G.£; t/xi � V �.£; l/ � I .l j BV Œt; £�/ j l 2 Rng D

D max
l

fhG0.£; ª/l; G.ª; t/xi � ®�.G0.£; ª/l/ � I .G0.£; ª/l jBV Œ£; ª�/

�I .G0.£; ª/l jBV Œt; £�/ j l 2 Rng:

After substituting G0.£; ª/l D œ we get

V.t; xj£; V .£; �// D V.t; xj£; V .£; �jª C 0; ®.�/// D

D max
œ

fhœ; G.ª; t/xi � ®�.œ/ � I .œ j œ 2 BV Œt; ª�/g D V.t; xjª C 0; ®.�//:

In the last line we presume BV Œt; ª� D fœ W kœkV � 1g: ut
Now, if at time £ there is jump x.£ C 0/ � x.£/ 6D 0; we have

V.£; x.£ C 0// D V.£ C 0; x.£ C 0// D V.ª C 0; ®.�//;

V .t; x/ D V.£; x.£C0// D V.£; x.£//C’.£/I ’.£/ D V.£; x.£C0//�V.£; x.£//:

Using these relations with previous type of reasoning, we come to (6.18).

Remark 6.1.3. For the specific problem of this section note that the inequality

V.ª; xjª; ®.�// � ®.x/
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is true, since

V.ª; xjª; ®.�// D

D max
l

fhl; xi � ®�.l/ j kB 0.ª/lk � 1g � max
l

fhl; xi � ®�.l/ j l 2 Rng � ®.x/:

This inequality may even be a strict one. Thus, with ®.x/ D I .xjfx.1/g/;
B.ª/ D I; we have V.ª; xjª; ®.�// D maxlfhl; x � x.1/ijklk � 1g D kx � x.1/k
< ®.x/:

The principle of optimality may now be used for deriving an analogy of the HJB
equation. However, here we have to count on two types of points £ 2 Œt; ª�, namely,
those, where there is no control (U.t/ D const; with t 2 Œ£ � ©; £ C ©� for some
© > 0/ and those where there is an impulse u0•.t � £/:

In the first case take t D £; ¢ 2 Œ0; ©/: Then we come to inequality

v.£/ D V.£; x/ � V.£ C ¢; G.£ C ¢; £/x/ D v.£ C ¢/;

where v.¢ C £/ is nondecreasing due to the principle of optimality. Hence V.£; x/

is directionally differentiable at f£; xg along f1; A.£/xg and here

V 0.£; xI 1; A.£/x/ D dv.¢/=d¢ j¢D0 � 0:

With V totally differentiable we have

H1.£; x; Vt ; Vx/ D dV.£; x/

d£
D Vt .£; x.£//ChVx.£; x.£//; A.£/xi � 0: (6.19)

Further on, in the absence of differentiability the scalar product should be
interpreted as the directional derivative.

In the second case there is a jump at t D £: Then £ does not change and we take
Vt .£; x.£// D 0. Here denote the jump as u D ’h; where the unit vector h defines
the direction of the jump and ’ > 0—the size of the jump.

Now we have

H2.£; x; 0; Vx/ D ’ min
h

fhVx.£; x/; B.£/hi C khk j khk D 1g D 0; (6.20)

where the minimizer h0 of unit length gives us the direction of the jump. Clearly,
here the multiplier ’ > 0 may be omitted.

The size ’ of the jump is obtained from condition

H1.£ C 0; x.£ C 0/; Vt .£ C 0; x.£ C 0//; Vx.£ C 0; xC.£ C 0// D 0: (6.21)

Here x.£ C 0/ D x.£/ C B.£/u0; u0 D ’h0; ’ > 0: With ®.x/ � 0 it can also
arrive from the calculation ’ D V.£ C 0; x.£ C 0// � V.£; x.£//:
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We have thus found that V.t; x/ must satisfy the relation (a variational inequality)

H .t; x; Vt ; Vx/ D minfH1.t; x; Vt ; Vx/; H2.t; x; Vt ; Vx/g D 0; (6.22)

under boundary condition

V.ª; x/ D V.ª; xI ª; ®.ª//: (6.23)

If necessary, V.t; x/ may be always treated as a generalized (viscosity-type)
solution (see [16]).

Denote q D Vt ; p D Vx . The last conclusions are now summarized as follows.

Theorem 6.1.6. The value V.t; x/ function is a solution (classical or generalized)
to the HJB-type Eq. (6.22) under boundary condition (6.23), where

H1.t; x; q; p/ D q C hp; A.t/xi; H2.t; x; q; p/ D min
h

fhp; B.t/hi C khk j khk D 1g:

Denote H 0 D arg minhfhp; B.t/hi C khk j khk D 1g:
Theorem 6.1.7. The synthesizing control U0.t; x/ has the following form:

(i) if H2.t; x; Vt ; Vx/ > 0, then U0.t; x/ D f0g;
(ii) if H2.t; x; Vt ; Vx/ D 0, then U0.t; x/ D fu0 D ’h W h 2 H 0g;

with (ii) taken under H2.t; x.t C 0/; Vt .t; x.t C 0//; Vx.t; x.t C 0/// D 0;

and with H1.t; x.t C 0/; Vt .t; x.t C 0//; Vx.t; x.t C 0/// D 0; x.t C 0/ D
x C ’B.t/h:

Related assertions are proved by direct calculation. These theorems are illustrated
next.

Example 6.1.2. Consider the problem of minimizing VarU.�/ due to equation

dx D b.t/dU; x.0/ D x; x.2/ D 0; b.t/ D 1 � .1 � t /2:

Here x 2 R; t 2 Œ0; 2�: Following Theorems 6.1.6, 6.1.7, we have

V.t; x/ D

D max
l

(
hl; �xi

maxŸ jb.Ÿ/l j

ˇ̌
ˇ̌
ˇŸ 2 Œt; 2�; l 2 R; l 6D 0

)
D jxj

maxŸfb.Ÿ/jŸ 2 Œt; 2�g

D
� jxjb�1.1/; t � 1;

jxjb�1.t/; t > 1:
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Let £ D 1: Consider the following cases:

• With t < £ we have Vt .t; x/ D 0; Vx.t; x/ D signxb�1.1/, so that
H1.t; x; Vt ; Vx/ D Vt .t; x/ D 0 and

H2.t; x; Vt ; Vx/ D 1 � jb.t/Vxj D 1 � b.t/

b.1/
D .1 � t /2 > 0:

There are no jumps at these points.
• With t > £ we have

Vt .t; x/ D 2.t � 1/jxj
t 2.2 � t /2

; Vx.t; x/ D sign.x/

b.t/
:

Here H1.t; x; Vt ; Vx/ D Vt .t; x/ > 0 with x 6D 0; while H1.t; x; Vt ; Vx/ D 0

with x D 0 and

H2.t; x; Vt .t; x/; Vx.t; x// D 1 � jb.t/Vxj D 1 � b.t/b�1.t/ D 0; 8x:

Therefore, if we start moving at t� > £; then there must be an immediate
jump to zero with u0 D �x.t�/signx.t�/b�1.t/j•.t � t�/.

• With t D £ we have

b.£/ D 1; V .£; x/ D jxjb�1.£/ D jxj; Vt .£; x/ D 0; Vx.£; x/ D signx;

while

H2.£ C 0; x.£ C 0/; Vt .£ C 0; x.£ C 0//; Vx.£ C 0; x.£ C 0/// D

min
h

fhsign.x/; hi C 1g D h0 C 1 D 0;

and

V.£; x.£// � V.£ C 0; x.£ C 0// D ’ D jxj;

H1.£ C 0; x.£ C 0/; Vt .£ C 0; x.£ C 0//; Vx.£ C 0; x.£ C 0/// D 0:

There is a jump u0 D �xsignx•.t � £/:

Finally, the synthesized system now looks like

dx=dt D �b.t/x•.t � £/ or dx D �b.t/xdU 0.t; £/; (6.24)

where U 0.t; £/ D 1£.t/. (Recall that 1£.t/ D 0; if t 2 Œ0; £� and 1£.t/ D 1; if
t 2 .£; 2�:/
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The solution to symbolic Eq. (6.24) is given by the Lebesgue–Stieltjes integral
equation (see [234])

x.t/ D x �
tZ

0

b.t/x.t/dU 0.t; £/;

where x.t/ is a left-continuous function. �
It now just remains to interpret the synthesized equation in the general case. This

will be done at the end of next section after discussing approximate solutions to
impulse controls.

6.2 Realizable Approximation of Impulse Controls

Impulse controls introduced above are “ideal” elements. In order to allow a physical
realization of the proposed schemes we introduce the next “realistic” scheme. Here
the original control will be subjected to double constraints where in the previous
problem there is an additional hard bound on the norm of the control vector, while
the bounding parameter may tend to infinity.

6.2.1 The Realistic Approximation Problem

Problem 6.2.1. Consider Problem 6.1.1 under additional constraint u.t/ 2 B�.0/,
so that there arrives the next problem: find

J.t0; x0ju.�// D
Z ª

t0

ku.t/kdt C ®.x.ª// ! inf; (6.25)

Px.t/ D A.t/x.t/ C B.t/u.t/; t 2 Œt0; t1�; (6.26)

x.t0/ D x0; ku.t/k � �: (6.27)

The solution to this problem exists since the set of all admissible controls u.�/ is now
weakly compact in L2.Œt0; t1�IRp/ and convex, while the cost functional J.u.�// is
weakly lower semicontinuous and convex.

The value function for the last problem is

V.t; x; �/ D min
u

fJ.t; xju.�// j t; xg:

Using the schemes of Chap. 2 (see Sect. 2.3.1), we come to the next proposition.
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Theorem 6.2.1. The value function V.t; x/ is a solution to the HJB equation

@V.t; x; �/

@t
C min

( *
@V.t; x; �/

@x
; A.t/x.t/ C B.t/u

+
C kuk

ˇ̌
ˇ̌ kuk � �

)
D 0;

(6.28)

with boundary condition

V.t; x; �/ D ®.x/: (6.29)

As we shall see, V.t; x; �/ is directionally differentiable at each position ft; xg, so
that it satisfies Eq. (6.28) for all t .

Function V.t; x; �/ may be calculated through methods of convex analysis,
similar to the schemes of Sects. 2.4 and 2.6. Indeed, after applying the minmax
theorem of [70], and a permutation of the minimum in u with the integral, we have

V.t; x; �/ D

D min
u

max
l

� Z ª

t

.ku.Ÿ/k C hl; G.ª; Ÿ/B.Ÿ/u.Ÿ/i/dŸ C hl; G.ª; t/xi

�®�.l/ j l 2 Rn; kuk � �

�
D

D max
l

f¥.t; x; l/ C hl; G.ª; t/xi � ®�.l/g (6.30)

where

¥.t; x; l/ D
Z ª

t

min
u

fhl; G.ª; s/B.s/ui C kuk j kuk � �gds:

Here the subproblem

h.s; l/ D min
u

f§Œs�B.s/u C kuk j kuk � �g;

with §Œs� D l 0G.ª; s/, has the solution

h.s; l/ D
�

0 if k§Œs�B.s/k � 1

�.1 � k§Œs�B.s/k/ if k§Œs�B.s/k > 1;

This yields

Lemma 6.2.1. The value function

V.t; x; �/ D max
l

fhl; G.ª; t/xi � �

Z ª

t

fk§Œs�B.s/k � 1gCds � ®�.l/g D

D max
l

f§Œt�x C ¥.t; x; l/ � ®�.l/ j l 2 Rng;
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where

fk§Œs�B.s/k � 1gC D
� k§Œs�B.s/ � 1k; if k§Œs�B.s/k � 1 > 0

0; if k§Œs�B.s/k � 1 � 0:

Exercise 6.2.1. (a) Check that function V.t; x; �/ satisfies Eqs. (6.28), (6.29).
(b) Prove that with � ! 1 function V.t; x; �/ converges pointwise to V.t; x/

of (6.16).
(c) Prove that with � ! 1 the HJB Eqs. (6.28), (6.29) converges to

Eqs. (6.22), (6.23).

Lemma 6.2.2. The conjugate function to V.t; x; �/ in the second variable is

V �.t; l; �/ D �

Z ª

t

fkl 0G.t; s/B.s/k � 1gCds C ®�.l 0G.t; ª//: (6.31)

The last formula is derived through direct calculation.
The control strategy u0.t; x; �/ for Problem 6.2.1 is obtained from the next

subproblem

U0.t; x; �/ D arg min

��
@V.t; x; �/

@x
; B.t/u

	
C kuk

�
:

Denote B 0.t/Vx.t; x; �/ D c.t; x; �/. Then this gives

U0.t; x; �/ D
8<
:

0; if kc.t; x; �/k < 1;

Œ0; ��c.t; x; �/�; if kc.t; x; �/k D 1;

��c.t; x; �/=kc.t; x; �/k; if kc.t; x; �/k > 1:

Theorem 6.2.2. The closed-loop solution to Problem 6.2.1 is given by U0.t; x; �/

and the optimal trajectories emanating from ft; xg satisfy the differential inclusion

dx

ds
2 A.s/x C B.s/U0.s; x; �/: (6.32)

Here set-valued function U0.s; x; �/ is upper semicontinuous in fs; xg. Therefore a
solution to (6.32) exists.

Suppose x�Œs� is a solution to (6.32) emanating from ft; xg. Denote
u0.s; x�Œs�; �/ 2 U0.s; x�Œs�; �/ to be a measurable selector of U0.s; x�Œs�; �/

and take continuous function U 0.s; x�Œs�; �� to be such that dU 0.s; xŒs�; �/ D
u0.s; xŒs�; �/ds a.e. Then x�Œs� will also be a solution to the Stieltjes integral
equation

x�Œs� D G.s; t/x C
Z s

t

G.s; Ÿ/B.Ÿ/dU 0.Ÿ; x�ŒŸ�; �/:
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With � ! 1 the approximate control U 0.s; x�Œs�; �/ weakly converges to the
ideal U0.s; xŒs�/, so that with � ! 1

Z s

t

G.s; Ÿ/B.Ÿ/dU 0.Ÿ; x�ŒŸ�; �/ !
Z s

t

G.s; Ÿ/B.Ÿ/dU0.Ÿ; xŒŸ�/:

where U 0.Ÿ/ D U0.Ÿ; x.Ÿ// is a piecewise-constant function. The pointwise limits
of trajectories x�Œs� will be the optimal trajectories xŒs� D x0Œs� for the original
Problem 6.1.1.

Another version of formalizing the limit transition from approximating Prob-
lem 6.2.1 to Problem 6.1.1 is as follows.

6.2.2 The Approximating Motions

We indicate the approximation of a delta impulse u.t; t�; x/ D ’.t�; x/•.t � t�/

by a rectangular pulse (a tower) of lower base t 2 Œt�; t� C ™.t�; x; �/� and height
u.t; x; �/ D �; t 2 Œt�; t� C ™.t�; x; �/� with �™.t�; x; �/ D ’ D constant � 0.

Definition 6.2.1. The pair of functions ‡ D fu.t; xI �/; ™.t; xI �/g (magnitude
and duration), is said to be a feedback control strategy for Problem 6.2.1 if

u.t; xI �/ 2 @B�.0/ [ f0g; and u.t; xI �/ ! u1.t; x/; .� ! 1/

™.t; xI �/ � 0; and �™.t; xI �/ � ’.t; x/ � 0; .� ! 1/:

The component u.t; xI �/ is the approximating control impulse which is issued
on the interval Œt; t C ™.t; xI �/�. Note that ™ ! 0 as � ! 1, and in the limit one
has a delta-function of direction u1.t; x/ and intensity ’.t; x/ as the ideal impulse
control.

Definition 6.2.2. Fix a control strategy ‡ , number � > 0 and a partition t0 D £0 <

£1 < : : : < £s D t1 of interval Œt0; t1�. An approximating motion of system (6.28)
is the solution to the differential equation

£i D £i�1 C ™.£i�1; x�.£i�1/I �/;

Px�.£/ D �B.£/u.£i�1; x�.£i�1/I �/; £i�1 � £ < £i :

Number ¢ D maxi f£i � £i�1g is the diameter of the partition.

Definition 6.2.3. A constructive motion of system (6.2) under feedback control
‡ is a piecewise continuous function x.t/, which is the pointwise limit of
approximating motions x�.t/ as � ! 1 and ¢ ! 0.
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Due to [75] the approximating differential inclusion (6.32) under feedback
strategy U0.s; x; �/ does have a solution, a realizable constructive approximating
motion. And thus the ends meet.

An illustrative explanation to the indicated procedure is given by the following
situation. Suppose the on-line position of system (6.1) is ft; xg, and from (6.22) it
follows that control U 0.�/ has a jump Nh•.t � Nt /. Then the feedback strategy pair
Nu D u.Nt ; NxI �/, N™ D ™.Nt ; NxI �/ is to be chosen such that

B.t/ Nh D �


 Z NtCN™

Nt
B.t/dt

�
Nu:

In the limit this yields u.Nt ; NxI �/ ! Nh=k Nhk and �™.Nt ; NxI �/ ! k Nhk with � ! 1:

That is, an impulse Nh•.t � Nt / of intensity ’ D Nh is approximated by a platform
of height (magnitude) �, direction Nh, and width (duration) ��1k Nhk.

Example 6.1.3. We now deal with the same 2-dimensional system as in Exam-
ple 6.1.1, but looking for the solution in the form of feedback control strategies.
This will be done by specifying certain impulse domains which serve as regions
where the instantaneous impulses are activated. They are in a certain sense similar
to switching surfaces for bang-bang control.

We consider system

�
dx1 D x2dt;

dx2 D �x1dt C dU;
;

where impulses arrive as generalized derivatives of u D dU=dt and, t 2
Œ0; �=2�, x.t/ D Œx1; x2�0. Our aim will be to minimize VarU.Ÿ/; Ÿ 2 Œt �0; ª C0�;

under x.ª/ D 0; ª D �=2:

Following (6.8), (6.16), we have

�0.t; x/ D V.t; x/ D maxfhl; �G.�=2; t/xi j klkjV � 1g:

where

G.�=2; t/ D
�

sin t cos t

� cos t sin t

�
;

and

klkV D maxfjhl; G.�=2; Ÿ/b/ij j Ÿ 2 Œt; �=2�g D

D
q

l2
1 C l2

2 maxfj cos.Ÿ � ®/j j Ÿ 2 Œt; �=2�g

where b D Œ0; 1�0 and ® D arcsin l2.l2
1 C l2

2 /�1=2; ® 2 Œ��=2; �=2�.
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Further assuming t D 0; we have. Ÿ 2 Œ0; �=2� and cos t D 1; sin t D 0: This
gives

max j cos.Ÿ � ®/j D
�

1; ª 2 .0; �=2/;

maxfj sin ®j; j cos ®jg; otherwise;

and

klkV D
( q

l2
1 C l2

2 l1l2 > 0;

maxfjl1jj; jl2jg otherwise:

Then

�0.0; x/ D kzk D maxfhl; zi j�V klkV � 1g D
( q

z2
1 C z2

2 z1z2 > 0;

maxfjz1j C jz2jg z1z2 < 0;

where z D G.�=2; 0/x D fx2; �x1g: The maximizer in the last problem is

l0 D
8<
:

.1; �1/ z1 > 0; z2 < 0;

.�1; 1/ z1; 0; z2 > 0

z=kzk z1z2 > 0;

and the impulses arrive at £ D argmaxfjb0G0.�; Ÿ/l0j j Ÿ 2 Œ0; �=2�g which here, at
z1z2 < 0; are £1 D 0; £2 D �=2: Then the optimal synthesizing strategy u0.t; x/ at
point ft 2 .�0; ª�; xg; for ’1 > 0; ’2 > 0; is

u.t; x/ D �’1•.t � 0/ C ’2•.t � �=2/; ’1; ’2 � 0; ’1 C ’2 D �0;

Checking this with terminal condition x.ª/ D 0; we finally get ’1 D x2; ’2 D x1:

This solution is illustrated in the following figures. Namely, Fig. 6.2 demonstrates
the general picture of ideal feedback solutions from position f.t � 0/; xg with
optimal discontinuous trajectories with jumps of the velocities x2 shown in Fig. 6.3.
The realizable solution under double constraint is indicated in Fig. 6.4. Here the
plane is divided into four domains three of which, D0; D�, and D�� correspond,
respectively, to controls u D 0; u D �; u D ��: The fourth external domain
D; indicates initial states from which the solution to problem of reaching final
state x D 0 under constraint � is impossible (not solvable). Figure 6.5 illustrates
convergence of solutions from case Fig. 6.4 to case Fig. 6.3 with � ! 1.
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Fig. 6.2 General scheme
of feedback impulse control
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Fig. 6.3 Ideal control
trajectories
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Fig. 6.4 Double-constraint
control trajectories
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Fig. 6.5 The convergence of
double-constraint controls to
the impulse control
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Chapter 7
Dynamics and Control Under State Constraints

Abstract The topics of this chapter are problems of reachability and system
dynamics under state constraints in the form of reach tubes. Indicated are general
approaches based on the Hamiltonian formalism and a related Comparison Prin-
ciple. Further emphasis is on the dynamics of linear systems under hard bounds
on the controls and system trajectories. A detailed solution is presented based on
ellipsoidal approximations of bounded trajectory tubes.

Keywords State constraints • Reach tubes • Comparison Principle • Hamilto-
nian approach • Linear-convex systems • Ellipsoidal techniques

The issue of control under state constraints is at the heart of many applied problems.
An abundant literature on such issues is published under the notion of “viability
theory” [5, 6]. The specifics of this book lies in general treatment of such problems
under time-dependent state constraints through Hamiltonian techniques with related
Comparison Principle, while the linear-convex case is covered in detail through
ellipsoidal approximations. Such a move provides a natural merger of theory with
appropriate computation schemes. The material of this chapter uses results of
papers [158, 185]. Its topics are also a useful preparation for further consideration
of problems on feedback control under state constraints and external obstacles
addressed in the next chapter.

7.1 State-Constrained Reachability and Feedback

This section deals with general theory of reach sets and tubes under hard bounds
on controls, and time-dependent geometric (hard) constraints on the states. The
solution relations are given here in Hamiltonian terms, while the linear-convex
case is described through tight external approximations by parametrized ellipsoid-
valued tubes. The result is an exact parametric representation of state-constrained
reachability tubes through families of external ellipsoidal tubes.

© Springer International Publishing Switzerland 2014
A.B. Kurzhanski, P. Varaiya, Dynamics and Control of Trajectory
Tubes, Systems & Control: Foundations & Applications 85,
DOI 10.1007/978-3-319-10277-1__7
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7.1.1 The Reachability Problem Under State Constraints

We begin with the general nonlinear case. Similar to (1.1) the controlled system is
thus described by the same differential equation, with same properties, namely

Px D f .t; x; u/; t0 � t � £; (7.1)

in which the state x 2 Rn and the control u 2 Rp are restricted by

u.t/ 2 P .t/; x.t/ 2 Y .t/; (7.2)

for all t � t0. Here P .t/; Y .t/ are compact set-valued functions in Rp;Rn,
respectively, continuous in the Hausdorff metric. The initial state is restricted by
x.t0/ 2 X 0, a compact subset of Rn. The function f .t; x; u/ is assumed to ensure
uniqueness and uniform extension of solutions to any finite interval of time for any
x.t0/ D x0; u.t/ 2 P .t/; t � t0.

Definition 7.1.1. Given set-valued positions ft0; X 0g, X 0 \ Y .t0/ 6D ;, the reach
set (or “attainability domain”) X .£; t0; X 0/ at time £ > t0 is the set

X Œ£� D X .£; t0; X 0/

of all states xŒ£� D x.£; t0; x0/; x0 D x.t0/ 2 X .t0/ D X 0, that can be reached at
time £ by system (7.1), from some x0 2 X 0, using all possible controls u that ensure
constraints (7.2). The set-valued function £ 7! X Œ£� D X .£; t0; X 0/ is the reach tube
from ft0; X 0g.

The Basic Problem is simply stated:

Problem 7.1.1. Calculate the reach sets X .£; t0; X 0/; £ � t0.

A fairly general approach is to relate reach sets to an optimization problem [178].
This could be done by calculating certain value functions that may be selected in
several ways. Consider first the value function

V.£; x/ D min
u

(
d 2.x.t0/; X 0/ C

Z £

t0

d 2.x.t/; Y .t//dt

)
; (7.3)

under the restriction x.£/ D x. Here the minimum is over all measurable functions
(controls) u.t/ 2 P .t/, function x.t/; .t � t0/; is the corresponding trajectory
of (7.1), and

d 2.x; X / D minfhx � z; x � zijz 2 X g

is the square of the distance function d.x; X /.
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Lemma 7.1.1. The following relation is true:

X .£; t0; X 0/ D fx W V.£; x/ � 0g:

This follows from the definition of the reach set X .£; t0; X 0/, which is thus a level
set of V.£; x/.

To state the important semigroup property of the value function, we extend
definition (7.3) to more general boundary conditions, namely,

V.£; x j t0; V .t0; �// D

D min
u

�
V.t0; x.t0// C

Z £

t0

d 2.x.t/; Y .t//dt j u.�/ 2 P .�/
�

; (7.4)

under the restriction x.£/ D x. Function V.t0; �/ defines a given boundary condition.
In (7.2) this condition is V.t0; x/ D d 2.x; X 0/.

Theorem 7.1.1. The value function V.£; x/ satisfies the principle of optimality,
which has the semigroup form

V.£; x j t0; V .t0; �// D V.£; x j t; V .t; � j t0; V .t0; �///; t0 � t � £: (7.5)

This property is established through conventional arguments similar to Sect. 2.1,
that also yield similar properties for reach sets. The solution of the reachability
problem can be cast in the form of a solution of the “forward” HJB equation that
follows from (7.5). To develop this approach we further assume that the function
V.t; x/ is continuously differentiable.

A standard procedure, as before, then yields

Vt .t; x/ C max
u

fhVx.t; x/; f .t; x; u/i � d 2.x; Y .t// j u 2 P .t/g D 0; t0 � t � £;

(7.6)

with boundary condition V.t0; x/ D d 2.x; X 0/. Here Vt ; Vx stand for the partial
derivatives of V.t; x/. Note that the term d 2.x; Y .t// 6D 0 only outside the state
constraint Y .t/.

An alternative scheme relies on the value function

V.£; x/ D min
u

f®0.t0; x.t0//g: (7.7)

The minimum in (7.7) is over all u.t/ 2 P .t/; t 2 Œt0; £�, under restrictions x.£/ D
x and ®.t; x/ � 1; t 2 Œt0; £�. We will use this formulation for the case when

®0.t0; x/ D hx � x0; .X0/�1.x � x0/i1=2; X0 D X00
> 0;

®.t; x/ D hx � y.t/; .Y.t//�1.x � y.t//i1=2; Y.t/ D Y 0.t/ > 0; (7.8)
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so that the initial condition and the state constraints are ellipsoidal:

x.t0/ 2 E.x0; X0/ D fx W ®0.t0; x/ � 1g;

x.t/ 2 E.y.t/; Y.t// D fx W ®.t; x.t// � 1; t 2 Œt0; £�g:

Once x.£; t0; x.t0// D x.£/ D x is fixed, one may figure out whether x 2
X .£; t0; X 0/ by looking at the value V.£; x/. Then the respective vector x.t0/ 2
E.x0; X0/ iff there exists a control u.t/; t 2 Œt0; £�; that ensures V.£; x/ � 1, so
that x.£/ 2 X .£; t0; X 0/ iff V.£; x/ � 1.

Therefore the reach set at time £ is

X .£; t0; X 0/ D fx j V.£; x/ � 1g;

which is thus a level set of V.£; x/, and the previously stated semigroup property of
the value function (the principle of optimality) holds again.

The solution of the reachability problem can again be cast in the form of a
solution of the forward HJB equation—now somewhat different from (7.6). Again
assume the functions V.t; x/ and ®.t; x/ are continuously differentiable.

Denote

H .t; x; V; u/ D Vt .t; x/ C hVx.t; x/; f .t; x; u/i: (7.9)

Lemma 7.1.2. The formal HJB equation is

max
u2P .t/

H .t; x; V; u/ D 0 if ®.t; x/ < 1; (7.10)

and

max
u2Ps .t/

H .t; x; V; u/ D 0 if ®.t; x/ D 1; (7.11)

with

Ps.t; x/ D P .t/ \ fu j H .t; x; ®; u/ � 0g; (7.12)

and with boundary condition

V.t0; x/ D ®0.t0; x/: (7.13)

We sketch a proof of Lemma 7.1.2.
Together with ®.t; x/ < 1, the principle of optimality (7.5), with t0 D £ � ¢ ,

gives

0 D min
u

fV.£ � ¢; x.£ � ¢// � V.£; x/ j u 2 P .t/; t 2 Œ£ � ¢; £�g (7.14)



7.1 State-Constrained Reachability and Feedback 279

or

max
u2P .t/

H .t; x; V; u/ D H .t; x; V; u0/ D 0: (7.15)

With ®.t; x/ D 1 we apply the same principle but only through those controls that
do not allow the trajectory to move outside the state constraint. These are

u.t; x/ 2 Ps.t; x/ D fu 2 P .t/ \ fu j H .t; x; ®; u/ � 0gg:

Let u0.t; x/ be the optimal control for the trajectory x0.t/ that emanates from
x.£/ D x and minimizes ®0.t0; x.t0// under constraints ®.t; x.t// � 1; t 2 Œt0; £�.

Note that with ®.t; x0.t// D 1 we have two cases: either H .t; x0.t/; ®; u0/ D
0, which means the related optimal trajectory runs along the state constraint
boundary, or

d®.t; x0/.t//=dt juDu0 D H .t; x0.t/; ®; u0/ < 0;

so the optimal trajectory departs from the boundary, and for ¢ > 0 we have ®.t C
¢; x0.t C ¢// < 1. Relations H .t; x0.t/; ®; u0/ � 0 and (7.15) allow one to find the
control u0 along the state constraint boundary.

If all the operations in (7.6), (7.10), (7.11) result in smooth functions, then these
equations may have a classical solution [51]. Otherwise (7.6), (7.7) form a symbolic
generalized HJB equation, which has to be described in terms of subdifferentials,
Dini derivatives, or their equivalents. However, the typical situation is that V is
not differentiable and as said before, in Chap. 5, the treatment of (7.6), (7.7) then
involves the notion of a generalized “viscosity” solution for these equations or their
equivalents [50, 80, 247]. One approach is to use the method of characteristics as
developed for this type of equation (see [51]) and modified for the nonsmooth
case [248]. But it is a fairly complicated procedure, especially in the nonsmooth
case for which the method requires additional refinement. Another approach is
to look for the solution through level set methods [221, 244]. However, for the
specific “linear-convex” problems of this book the function V.t; x/ is convex in
x, hence directionally differentiable in any direction f.1; x/g, which proves it to be
a generalized solution through classical technique (see [16, 123]). Moreover, in this
case an effective ellipsoidal technique may be applied, which allows one to bypass
the calculation of solutions to the HJB equation.

The Evolution Equation

The next question is: on which evolution equation would the multivalued mapping
X Œt � D X .t; �/ D X .t; �jX .t0; �// under state constraint be satisfied? An answer is
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in papers [158, 164], where this was suggested to be taken as the integral funnel
equation for differential inclusion

Px D2 f .t; x; P .t//; x.t0/ 2 X 0; (7.16)

under constraint

x 2 Y .t/; t 2 Œt0; ª�:

Here is one of such equations (see [174] and also [164])

lim
¢!C0

1

¢
hC
 

ZŒt C ¢�;
[(

x C ¢.f .t; x; P .t//

ˇ̌
ˇ̌
ˇ x 2 ZŒt � \ Y .t/

)!
D 0; Z.t0/ D X 0;

(7.17)
where hC is the Hausdorff semidistance:

hC.X 0; X 00/ D minf© W X 0 	 X 00 C ©B.0/g

and B.0/ is a unit ball in Rn. The solution ZŒt � to this evolution equation is a
multivalued function, with ZŒt0� D X 0; which satisfies (7.17) almost everywhere.
As a rule, this solution is not unique. However, there exists a solution XmŒt �, sought
for among these Z.�/; which coincides with the realization of function X .t; �/ and is
the inclusion-maximal among all solutions ZŒt � to (7.17). Namely, X Œt � 
 ZŒt �,
where ZŒt � is any solution that starts from Z.t0/ D X 0; see [174]. Note that
Eq. (7.17) makes sense for any upper semi-continuous set-valued functions Y .t/.
Hence in equations of type (7.17) we may allow these functions to be right or left-
continuous.

However, there is a more rigorous version of the funnel equation (see [158]),
namely,

lim
¢!C0

1

¢
hC
 

ZŒt C¢�;
[(

x C¢.f .t; x; P .t//

ˇ̌
ˇ̌
ˇ x 2 ZŒt �\Y .t C¢/

)!
D 0; Z.t0/ D X 0:

(7.18)

This version demands that support function f .l; t/ D ¡.l j Y .t// would be
differentiable in t and its partial derivative @f .l; t/=@dt would be continuous. Then
the set-valued solution ZŒt � satisfies (7.18) everywhere and will be unique.

Theorem 7.1.2. (i) The solution ZŒt � D Z.t; t0; X 0/ to differential inclusion (7.16)
satisfies the funnel equation (7.17) almost everywhere and its inclusion-
maximal solution ZŒt � D XmŒt � is unique.

(ii) The solution ZŒt � D Z.t; t0; X 0/ to differential inclusion (7.16) satisfies the
funnel equation (7.18) everywhere and its solution ZŒt � D X Œt � is unique.

In the sequel we always presume the following.
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Assumption 7.1.1. Functions V.£; x/ are continuous in all the variables, with
nonempty compact zero level-sets that have nonempty interiors of full dimension.

Such level sets

X Œ£� D fx W V.£; x/ � 0g 6D ;

may be gotten due to the last assumption for Lemma 7.1.2. Such are those that solve
our problem for linear systems with continuous coefficients and convex constraints
continuous in time. The indicated class of function V.£; �/ will be denoted as KV .

Remark 7.1.1. The variety KV may be considered as a metric space with metric:

d.V 0.£; �/; V 00.£; �// D h.X 0; X 00/;

where X 0; X 00—zero level-sets of V 0; V 00, and the Hausdorff distance

h.X ; Z/ D maxfhC.X ; Z/; hC.Z; X /g;

where hC.X ; Z/ is the Hausdorff semidistance.
This variety KV may also be endowed with another metric, introducing

d.V 0.£; �/, V 00.£; �// as the distance in the space CrŒt0; £� (of r-dimensional
continuous functions) between respective functions y0.t/, y00.t/ (t 2 Œt0; £�)
of (7.8) or (7.19), which generated V 0.£; �/; V 00.£; �/ due to Eqs. (7.9)–(7.13).
Such a definition may be propagated only to functions y.�/ 2 Y.�/. Similar metrics
may be also considered on the variety of functions V .1/.£; x/.

A detailed discussion of possible metrics for spaces of functions similar to those
generated by value functions of this chapter is given in monograph [98, Chap. 4,
Appendix C.5].

Sets X Œt � may thus be found, as in systems without state constraints, either
through value functions V.t; x/; from their level sets, or through evolution
Eqs. (7.17), (7.18). However, since direct calculation of these solutions is not
simple, we remind that it may suffice to avoid exact solutions to related HJB
equations under state constraints. We may hence apply the comparison principle
which gives upper and lower approximations to value function V.t; x/ for HJB
equation (7.6). Henceforth we may also obtain external and internal ellipsoidal
estimates of sets X . Such issues are described in the next sections.

7.1.2 Comparison Principle Under State Constraints

We shall now indicate the specifics of applying the comparison principle of Sect. 5.1
when the HJB equation is derived under state constraints. We further work with
system (7.1), (7.2), but here the state constraint Y .t/ will be presented as

Y .t/ D fx W y.t/ � g.t; x/ 2 R .t/g; t 2 Œt0; £�; (7.19)
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where values y; g lie in Rr ; r � n, while properties of functions y.t/; g.t; x/ as
same as those of x.t/; f .t; x/, respectively, and set-valued function R .t/ is taken to
be convex, compact-valued, and Hausdorff-continuous. The Comparison Principle
is further treated within two versions.

Version-A
We first use the approach used for Lemma 7.1.2 relying on relations of type

(7.3)–(7.6) and modifying them in view of (7.19). Then introducing notation

H.t; x; p/ D maxfhp; f .t; x; u/iju 2 P .t/g � d 2.y.t/ � g.t; x/; R .t//;

we observe, as in Sects. 2.3 and 2.4 (see also [178,198]), that the solution V.t; x/ of
the corresponding “forward” HJB equation

Vt C H.t; x; Vx/ D 0; V .t0; x/ D d 2.x; X 0/ (7.20)

allows to calculate X Œt � D X .t; t0; X 0/ as the level set X Œ£� D fx W V.£; x/ � 0g:
Here again this property is independent of whether V is a classical or a generalized
solution to Eq. (7.20).

To obtain approximations of V.t; x/ we proceed as follows.

Assumption 7.1.2. Given are functions H C.t; x; p/, wC.t; x/ 2 C1 and �.t/ 2
L1, which satisfy the inequalities

H.t; x; p/ � H C.t; x; p/; 8ft; x; pg; (7.21)

wC
t C H C.t; x; wx/ � �.t/; (7.22)

wC.t0; x/ � V.t0; x/: (7.23)

Theorem 7.1.3. Suppose H C.t; x; p/; wC.t; x/; �.t/ satisfy Assumption 7.1.2.
Then the following estimate for the reachability set X Œt � is true:

X Œt � 	 XCŒt �; (7.24)

where

XCŒt � D
�

x W wC.t; x/ �
Z t

t0

�.s/ds C V.t0; x.t0//

�
: (7.25)

Consider a pair x� 2 X Œt �; u�.s/ 2 P .s/; s 2 Œt0; t �, so that the corresponding
trajectory x�.s; t; x� j u�.�// D x�Œs� 2 X Œs�. Then

dwC.t; x/=dt jxDx�.t/

D wC
t .t; x�/ C hwC

x .t; x�/; f .t; x�; u�/i � d 2.y.t/ � g.t; x�.t//; R .t//

� wC
t .t; x�/ C H.t; x�; wC

x / � wC
t .t; x�/ C H C.t; x�; wC

x / � �.t/;
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hence

dwC.s; x/=dsjxDx�.s/ � �.s/:

Integrating this inequality from t0 to t gives

wC.t; x/ �
Z t

t0

�.s/ds C wC.t0; x.t0// �
Z t

t0

�.s/ds C V.t0; x.t0//g;

which implies x�.t/ 2 XCŒt � and the theorem is proved.
We now move to the discussion of internal estimates for sets X Œt �: As in the

above, we do not necessarily require differentiability of the value function V.t; x/.
Consider the next assumption.

Assumption 7.1.3. Given are functions H �.t; x; p/ 2 C and w�.t; x/ 2 C1;

which satisfy the inequalities

.i/ H.t; x; p/ � H �.t; x; p/; 8ft; x; pg;

.i i/ w�
t .t; x/ C H �.t; x; w�

x .t; x// � 0;

.i i i/ w�.t0; x/ � V.t0; x/:

Theorem 7.1.4. Suppose functions H �.t; x; p/; w�.t; x/ satisfy Assumption 7.1.3.
Then the following upper estimate for V.t; x/ is true:

V.£; x/ � w�.£; x/: (7.26)

Indeed, with t; x given, consider an optimal trajectory x.s/ for prob-
lem (7.1), (7.2) with (7.19), t0 � s � t , under condition x.t/ D x. The definition of
V.t; x/ yields

V.t; x/ D V.t0; x0/ C
Z t

t0

d 2.y.s/ � g.s; x.s//; R .s//ds:

Differentiating w� along this optimal trajectory and having in view
Assumption 7.1.3, we get

dw�.s; x/=ds jxDx.s/ D w�
s .s; x.s// C hw�

x .s; x.s//; f .s; x.s/; u.s//i

D w�
s .s; x.s// C H.s; x.s/; w�

x .s; x.s/// C d 2.y.s/ � g.s; x.s//; R .s//

� w�
s .s; x.s// C H �.s; x.s/; w�

x .s; x.s/// C d 2.y.s/ � g.s; x.s//; R .s//

� d 2.y.s/ � g.s; x.s//; R .s//:
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Integrating the last equality on Œt0; t �; we further have

w�.t; x/ � w.t0; x0/ C
Z t

t0

d 2.y.s/ � g.s; x.s//; R .s//ds

� V.t0; x0/ C
Z t

t0

d 2.y.s/ � g.s; x.s//; R .s//ds D V.t; x/:

and the theorem is proved.
Denoting X �Œt � D fx W w�.t; x/ � 0g; t � t0; and using the last inequality, we

further come to the conclusion

Corollary 7.1.1. Under Assumption 7.1.3 the following inclusion is true:

X �Œt � 	 X Œt �: (7.27)

This statement is similar to those of 7.5–7.7 from [48].
Version-B
We now rely on the approach used for Lemma 7.1.1. After introducing notation

H1.t; x; p; p0; œ/ D maxfhp; f .t; x; v/i � œhp0; f .t; x; v/i jv 2 P .t/g;

the corresponding “forward” HJB equation (7.7) transforms into

V
.1/

t C œ™t C H1.t; x; Vx; ™x; œ/ D 0; V .t0; x/ D d.x; X 0/ (7.28)

where the multiplier œ is to be found from condition

d™.t; x/=dt j(7.1) D ™t C h™x; f .t; x; v/i � 0; (7.29)

which is the total derivative of constraint function ™ along trajectories of
system (7.1).

This allows one to calculate X Œt � D X .t; t0; X 0/ as the level set X Œ£� D fx W
V .1/.£; x/ � 1g: This property is independent of whether V .1/ is a classical or
a generalized solution to Eq. (7.29). The comparison theorems and the respective
proofs for Version-B are similar to Version-A.

Remark 7.1.2. In this subsection we dealt with reach sets that are forward. For the
design of state-constrained feedback controls we may need to use backward reach
sets. These are designed similarly and discussed with detail within related schemes
of Sect. 5.1.

We now pass to the class of linear systems with convex constraints where the
previous results may be developed with greater detail.
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7.1.3 Linear-Convex Systems

Consider the linear system

Px D A.t/x C B.t/u; t0 � t � t1; (7.30)

in which A.t/; B.t/ are continuous, and the system is completely controllable (see
[109]). The control set P .t/ is a nondegenerate ellipsoid, P .t/ D E.p.t/; P.t//,
and

E.p.t/; P.t// D fu j hu � p.t/; P �1.t/.u � p.t//i � 1g; (7.31)

with p.t/ 2 Rp (the center of the ellipsoid) and the symmetric positive definite
matrix function P.t/ 2 Rp�p (the shape matrix of the ellipsoid) continuous in t .
The support function of the ellipsoid is

¡.l j E.p.t/; P.t/// D maxfhl; ui/ j u 2 E.p.t/; P.t//g D hl; p.t/iChl; P.t/li1=2:

The state constraint is

x.t/ 2 Y .t/; t 2 Œt0; t1�; (7.32)

in which Y .t/ is an ellipsoidal-valued function Y .t/ D E.y.t/; Y.t//; Y.t/ D
Y 0.t/ > 0; Y.t/ 2 Rn�n, and with y.t/; Y.t/ absolutely continuous. Lastly, X 0 D
E.x0; X0/ is also an ellipsoid.

In [174, 181] it is also assumed that the constraints on the controls and initial
values are ellipsoidal, which makes the explanations more transparent. However,
these methods are applicable to box-valued constraints as well, see Sect. 5.4.3 and
also [160, 182].

Lemma 7.1.3. For the linear system (7.30), with convex-valued restric-
tions (7.31), (7.32) the reach set X .£; t0; X 0/ at time £ is convex and compact.

The problem of calculating the reach set is now formulated as follows.

Problem 7.1.2. Calculate the support functions ¡.l j X .£; t0; X 0//; l 2 Rn:

This is equivalent to solving the following optimal control problem with state
constraints:

¡.l j X .£; t0; X 0// D maxhl; x.£/i

subject to x.t0/ 2 X 0; u.t/ 2 P .t/; x.t/ 2 Y .t/; t0 � t � £:
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For each vector l the solution to the optimal control problem is attained at the
terminal point x.0/.£/ of an optimal trajectory x.0/.t/; t 2 Œt0; £�; which starts from
a point x.0/.t0/ 2 X 0 determined throughout the solution process.

We will solve Problem 7.1.2 by calculating the value function (7.4), namely,

V.£; x/ D min
u

fd.x.t0/; E.x0; X0// j x.£/ D x;

u.t/ 2 P .t/; x.t/ 2 E.y.t/; Y.t//; t 2 Œt0; £�g;

for system (7.30), using the techniques of convex analysis as in paper [166].
To handle the state constraints X Œ£�, one usually imposes the following constraint

qualification.

Assumption 7.1.4. There exist a control u.t/ 2 P .t/; t 2 Œt0; £�; x0 2 X 0, and
© > 0, such that the trajectory xŒt � D x.t; t0; x0/ D x.t; t0; x0 j u.�// satisfies

x.t; t0; x0/ C –B.0/ � Y .t/; t 2 Œt0; £�:

Here B.0/ D fz W .z; z/ � 1; z 2 Rng. Under Assumption 7.1.4 this gives

V.£; x/ D supfhl; xi � ‰.£; t0; l/ j lg;

where

‰.£; t0; l/ D minf‰.£; t0; l; ƒ.�// j ƒ.�/g; (7.33)

‰.£; t0; l; ƒ.�// D s.t0; £; l j ƒ.�//x0 C .s.t0; £; l j ƒ.�//X0s0.t0; £; l j ƒ.�///1=2

C
Z £

t0

�
s.t; £; l j ƒ.�//B.t/p.t/ C .s.t; £; l j ƒ.�//B.t/P.t/B 0.t/s0.t; £; l j ƒ.�///1=2

�
dt

C
Z £

t0

�
dƒ.t/y.t/ C .dƒ.t/Y.t/dƒ0.t//1=2

�
:

Here, s.t; £; l j ƒ.�//; t � £; is the row-vector solution to the adjoint equation

ds D �sA.t/dt C dƒ.t/; s.£/ D l 0; (7.34)

and ƒ.�/ 2 VnŒt0; £�—the space of n-dimensional functions of bounded variation on
Œt0; £�. We also used the notation

Z £

t0

.dƒ.�/Y.t/dƒ0.�//1=2 D max

�Z £

t0

dƒ.t/h.t/ j h.t/ 2 E.0; Y.t//; t 2 Œt0; £�

�
:

This is the maximum of a Stieltjes integral over continuous functions h.t/ 2
E.0; Y.t//. The minimum ‰ over ƒ.�/ is reached because of Assumption 7.1.4.

A direct consequence of formula (7.33) is the solution to Problem 7.1.2.
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Theorem 7.1.5. Under Assumption 7.1.4, the support function ¡.l j X Œ£�/ is
given by

¡.l j X Œ£�/ D ‰.£; t0; l/ D minf‰.£; t0; l; ƒ.�// j ƒ.�/ 2 VnŒt0; £�g: (7.35)

Let ƒ.0/.�/ 2 arg minf‰.£; t0; l; ƒ.�// jƒ.�/ 2 VnŒt0; £�g be the minimizer
of (7.14) and let s.0/Œt � D s.t; £; l j ƒ.0/.�// be the solution to (7.30) with ƒ.�/ D
ƒ.0/.�/.

The application of formula (7.34) indicates a new approach to the next proposi-
tion. Alternate derivations of this approach can be found in [137,166, pp. 116–121].

Theorem 7.1.6 (The “Standard” Maximum Principle Under State Con-
straints). For Problem 7.1.2 under Assumption 7.1.4, the optimal control u.0/.t/,
initial condition x.0/, and trajectory x.0/Œt � D x.t; t0; x.0/ju.0/.�// must satisfy the
“maximum principle”

s.0/Œt �B.t/u.0/.t/ D maxfs.0/Œt �B.t/u j u 2 E.p.t/; P.t//g; t0 � t � £;

(7.36)
and the “maximum conditions”
Z £

t0

.dƒ.0/.t/y.t/ C .dƒ.0/.t/Y.t/dƒ.0/0
.t//1=2/ D

Z £

t0

dƒ.0/.t/x.0/Œt � (7.37)

D max

�Z £

t0

.dƒ.0/.t/z.t// j z.t/ 2 E.y.t/; Y.t//

�
;

s.0/Œt0�x.0/Œt0� D s.0/Œt0�x0 C .s.0/Œt0�; X0s.0/Œt0�/1=2 D

maxfs.0/Œt0�x j x 2 E.x0; X0/g: (7.38)

Here we note that the minimum over ƒ.�/ 2 VnŒt0; £� in (7.33) may be replaced by
the minimum over the pair fM.t/; œ.t/g, with dƒ.t/ D l 0M.t/dœ.t/, in which the
n�n matrix M.t/ is continuous, and œ.�/ 2 V1Œt0; £� is a scalar function of bounded
variation. Moreover, M.t/ may be chosen within a compact set C0 of continuous
functions. This new form of the multiplier dƒ.t/ is a result of combining the earlier
schemes of [96, 158]. We summarize this result as follows.

Lemma 7.1.4. The multiplier ƒ.0/.t/ allows the representation

dƒ.0/.t/ D l 0M .0/.t/dœ.0/.t/; (7.39)

with M .0/.�/ 2 C0; œ.0/.�/ 2 V1Œt0; £�.

Denote by SM .t; £/ D S.t; £ j M.�/; œ.�// the solution of the matrix equation

dS D �SA.t/dt C M.t/dœ.t/; S.£/ D I: (7.40)
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This is a symbolic expression for the linear differential equation. Under permutabil-
ity of A.t/ with its integral, namely, under condition

A.t/

Z t

£

A.s/ds D
Z t

£

A.s/dsA.t/

the solution to (7.40) for fixed £ is

SM .t; £/ D exp

�Z £

t

A.s/ds

�
�
Z £

t

�
exp

Z s

n

A.Ÿ/dŸ

�
M.s/dœ.s/;

in which the second integral is a Stieltjes integral. In the absence of the permutation
property the solution is expressed through expanding a matrix series of the Peano
type [32]. Note that with A.t/ � const the permutability property is always true.

As in the scheme of [158], the single-valued functional ‰.£; t0; l; ƒ.�// may be
substituted with the set-valued integral

R.£; t0; M.�/; œ.�/; X 0/ D S.t0; £ j M.�/; œ.�//E.x0; X0/ (7.41)

C
Z £

t0

S.t; £ j M.�/; œ.�//B.t/E.p.t/; P.t//dt C
Z £

t0

dœ.t/M.t/E.y.t/; Y.t//dt;

which yields the next result whose analytical form differs from [158].

Lemma 7.1.5. The following equalities hold:

X Œ£� D \fR.£; t0; M.�/; œ.�/; X 0/ j M.�/; œ.�/g D

\fR.£; t0; M.�/; œ.�/; X 0/ j M.�/; œ � tg;

for M.�/ 2 C0; œ 2 V1Œt0; £�.

Note that l 0M.t/dœ.t/ D dƒ.�/ is the Lagrange multiplier responsible for
the state constraint, with M.t/ continuous in t , and œ.t/, with bounded variation,
responsible for the jumps of the multiplier ƒ.�/. Such properties of the multipliers
are due to the linearity of the system and the type of the constraints on u; x, taken
in this section (see also [96,97]). In general, the multipliers responsible for the state
constraints may be represented through a measure of general type and therefore
may contain singular components. This will not be the case, however, due to the
next assumption which is now required.

Assumption 7.1.5. The multipliers ƒ.0/.t/; œ.0/.t/ do not have singular compo-
nents.

This assumption holds, for example, for piecewise absolutely continuous func-
tions, with finite number of jumps.
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Lemma 7.1.6. Assumption 7.1.5 holds if the support function ¡.q j Y .t// is
absolutely continuous in t , uniformly in q; hq; qi � 1, and for each vector l the
optimal trajectory for Problem 7.1.2 visits the boundary @Y .t/ for a finite number
of intervals.

Note that Lemma 7.1.5 gives the reach set at time £ as an intersection of sets
R.£; t0; M.�/; œ.�/; X 0/ parametrized by functions M.�/ 2 C0. Lemma 7.1.5 may be
used to calculate the reach set X Œ£� for any fixed time £.

However, on many occasions our objective is to recursively calculate the whole
tube X Œ£�; £ � t0. This means that while solving Problem 7.1.2 for increasing values
of £, we want a procedure that does not require one to solve the whole problem
“afresh” for each new value of £, but allows the use of the solutions for previous
values.

There is a difficulty here, namely, given M.�/; œ.�/, one may observe that
in general, R.£; t0; M.�/; œ.�/; X 0/ 6D R.£; t; M.�/; œ.�/; R.t; t0; M.�/; œ.�/; X 0//,
which means R given by (7.41) does not satisfy the semigroup property. Therefore
Theorem 7.1.5 and Lemmas 7.1.4 and 7.1.5 have to be modified to meet the
recursion requirements. Such a move would yield a modified version of the
maximum principle for linear systems under state constraints that eliminates the
last difficulty.

7.2 State-Constrained Control: Computation

In this section we emphasize computational approaches. We start with a modified
maximum principle. Then present an ellipsoidal technique to calculate reach sets
for linear systems with constraints on the control and state. The suggested scheme
introduces parametrized families of tight ellipsoidal-valued tubes that approximate
the exact reach tube from above, touching the tube along specially selected “good”
curves of Sect. 2.3 that cover the entire exact tube. This leads to recursive relations
that compared to other approaches, simplify calculations. The proofs that rely on
the mentioned “recurrent” version of the maximum principle under state constraints
are followed by an example. Finally given is a description of specific properties
used for proving the assertions stated in Sects. 7.1, 7.2 and crucial for easing the
computational burden in calculation.

7.2.1 The Modified Maximum Principle

To achieve the desired results, in the following sections we shall use some properties
related to the structure of the optimal controls and the state constraints. These
properties and additional assumptions are summarized below in Sect. 7.2.1 and
are typical of the problems under discussion. They are borrowed from previous
investigations.
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Starting with Assumptions 7.1.4 and 7.1.5 and presuming the conditions of
Lemma 7.1.6 are true, let us first restrict ƒ in (7.39) to satisfy the relation
dƒ.t/ D l 0M.t/dœ.t/, in which œ.t/ is absolutely continuous. This means
dƒ.t/ D l 0M.t/˜.t/dt and ˜.t/ D dœ.t/=dt � 0 for t 2 TY D ft j x

.0/

l .t/ 2
intY .t/g, when x

.0/

l .t/ is the optimal trajectory for Problem 7.1.2, for the given l .
Denoting L.t/ D S�1.t; £ j M.�/; ˜.�//M.t/˜.t/, we may replace

dS=dt D �SA.t/ C M.t/˜.t/; S.£; £ j M.�/; l.�// D I; (7.42)

whose solution is S.t; £ j M.�/; l.�//, with

dSL=dt D �SL.A.t/ � L.t//; SL.£; £/ D I;

whose solution is SL.t; £/. Then S.t; £ j M.�/; l.�// � SL.t; £/; t 2 Œt0; £�.
In this case, R.£; t0; M.�/; ˜.�/; X 0/ transforms into

R .£; t0; L.�// D SL.t0; £/E.x0; X0/ C
Z £

t0

SL.t; £/.E.B.t/p.t/; B.t/P.t/B 0.t//

CL.t/E.y.t/; Y.t///dt D X .£; t0; L.�/; X 0/ D XLŒ£�;

and XLŒ£� turns out to be the solution to the differential inclusion

Px.t/ 2 .A.t/ � L.t//x C L.t/E.y.t/; Y.t// C E.B.t/p.t/; B.t/P.t/B 0.t//;
(7.43)

t � t0; x0 2 E.x0; X0/: (7.44)

Here also the compact set C0 of functions M.t/ transforms into a compact set C00

of functions L.t/.
We thus arrive at the following important property, which is similar to those

proved in [158].

Lemma 7.2.1. The reach set X Œ£� is the intersection

X Œ£� D \fXL.£; t0; E.x0; X0// j L.�/g (7.45)

of the “cuts” or “cross-sections” XL.£; t0; E.x0; X0// of the reach tubes (solution
tubes) XL.�/ D fXLŒt � W t � t0g to the differential inclusion (7.43), (7.44). The
intersection is over all L.�/ 2 C00, a compact set of continuous matrix functions
L.t/; t 2 Œt0; £�.

A further calculation using convex analysis yields the next formula.

Theorem 7.2.1. The support function

¡.l j X .£; t0; E.x0; X0/// D inff¡.l j XL.£; t0; E.x0; X0/// j L.�/g; (7.46)
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with

¡.l j XL.£; t0; E.x0; X0/// D hl; x?
LŒ£�i C hl; GL.£; t0/X0G0

L.£; t0/li1=2 (7.47)

C
Z £

t0

hl; GL.£; s/B.s/P.s/B 0.s/G0
L.£; s/li1=2ds

C
Z £

t0

hl; GL.£; s/L.s/Y.s/L0.s/G0
L.£; s/li1=2ds:

Here

x?
LŒ£� D GL.£; t0/x0 C

Z £

t0

GL.£; s/.B.s/p.s/ C L.s/y.s//ds; (7.48)

and GL.£; s/ D SL.s; £/ is the transition matrix for the homogeneous system

Px D .A.t/ � L.t//x; GL.t; t/ D I; L.�/ 2 C00:

The significance of the last result is that in this specific problem the support
function of the intersection (7.45) is equal to the pointwise infimum (7.46) of the
support functions rather than to their infimal convolution as given by general theory
[237].

It is not unimportant to specify when the infimum in (7.46) is attained; that is,
it is actually a minimum. Indeed, it may happen that for a given l , the minimum
over L.�/ is in the class C00 (this, for example, is the case when œ.t/ turns out to
be absolutely continuous, as in the above). But to ensure the minimum is always
reached, we have to broaden the class of functions L.�/.

To illustrate how to continue the procedure we will assume the following.

Assumption 7.2.1. For each l 2 Rn, the optimal trajectory x0
l .t/ of Problem 7.1.2

visits the boundary @Y .t/ only during one time interval Œt1; t2�; t0 � t1 � t2 � £.

(The case of finite or countable collection of such intervals is treated in a similar
way.)

Then, instead of the product M.t/˜.t/, in (7.42) we must deal with multipliers
of the form M .t/ D M.t/˜.t/ C M1•.t � t1/ C M2•.t � t2/, where M1; M2 are
n � n matrices.

By introducing a new multiplier L.t/ D L.t/ C L1•.t � t1/ C L2•.t � t2/ under
transformation L.t/ D S�1.t; £ j M .�//M .t/, we shall match the formulas for
R.£; t0; M .�// and its transformed version R .£; t0; L.�//.

Applying the schemes of [96, 97, 158], to the specific case of this paper, it is
possible to rewrite the preceding assertions.
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Lemma 7.2.2. The support function

(7.49)

¡.l j X Œ£�/ D ¡.l j X .£; t0; E.x0; X0/// D minf¡.l j XL.£; t0; E.x0; X0// j L.�/g;

with

¡.l j XL.£; t0; E.x0; X0// D ˆ.l; L.�/; £; t0/; (7.50)

and

ˆ.l; L.�/; £; t0/ D hl; x�Œt �i C hl; G.£; t0/X0G 0.£; t0/li1=2 (7.51)

C
Z £

t0

hl; G.£; s/B.s/P.s/B 0.s/G 0.£; s/li1=2ds

C
Z £

t0

hl; G.£; s/L.s/Y.s/L0.s/G 0.£; s/li1=2ds

C
Z £

t0

hl; G.£; s/L1Y.s/L0
1G 0.£; s/li1=2d¦.s; t1/

C
Z £

t0

hl; G.£; s/L2Y.s/L0
2G 0.£; s/li1=2d¦.s; t2/:

Here G.£; s/ is the transition matrix for the homogeneous system

dx D .A.t/ � L.t//xdt � L1xd¦.t; t1/ � L2xd¦.t; t2/;

so that

x.t/ D G.£; t0/x0;

and ¦.s; t 0/ is the step function,

¦.s; t 0/ � 0; s < t 0I ¦.s; t 0/ � 1; s � t 0; d¦.s; t 0/=ds D •.s � t 0/:

The vector x�Œ£� in (7.48), (7.51) may be described by equation

dx�Œt � D ..A.t/ � L.t//x�Œt � C B.t/p.t/ C L.t/y.t//dt;

� L1.x�Œt � � y.t//d¦.t; t1/ � L2.x�Œt � � y.t//d¦.t; t2/; x�Œt0� D x0: (7.52)

Remark 7.2.1. Note that in the transition function G.t; s/ we have the difference
of a Riemann integral and a Riemann–Stieltjes integral. On the other hand, the last
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two integrals in (7.51) should be interpreted as Lebesgue–Stieltjes integrals [234].
This does not cause additional difficulty since the multipliers L1; L2 are among the
optimizers in (7.47).

A result similar to (7.45) is all the more true for the sets XL.£; t0; E.x0; X0//.

Corollary 7.2.1. The following intersection holds:

X Œ£� D X .£; t0; E.x0; X0// D \fXL.£; t0; E.x0; X0// j L.�/g:

The difference between Lemmas 7.2.1 and 7.2.2 is that in the former it is
not guaranteed that the boundary @X Œ£� is touched at each point by one of the
intersecting sets XL.£; t0; E.x0; X0//, whereas in the latter the boundary @X Œ£� is
indeed touched at each point by one of the sets XL.£; t0; E.x0; X0//. This is because
the minimum in (7.47) is attained.

Under Assumptions 7.1.4, 7.1.5, 7.2.1, and Assumption 7.2.3 given below, in
Sect. 7.2.5, the reasoning of the above leads to the next result.

Lemma 7.2.3. The reach set X Œt � D X .t; t0; E.x0; X0// is a convex compact set in
Rn which evolves continuously in t.

The boundary of the reach set X Œt � has an important characterization. Consider a
point x� on the boundary @X Œ£� of the reach set X Œ£� D X .£; t0; E.x0; X0//.1

Then there exists a support vector z� such that

hz�; x�i D ¡.z� j X Œ£�/:

Let L0.�/ be the minimizer for the problem (see (7.47)):

¡.z� j X Œ£�/ D minfˆ.z�; L.�/; £; t0/ j L.�/g D ˆ.z�; L0.�/; £; t0/: (7.53)

Then the control u D u�.t/, the initial state x.t0/ D x�0 2 E.x0; X0/; and the
corresponding trajectory x�.t/, along which system (7.30) is transferred from state
x�.t0/ D x�0 to x.£/ D x�, are specified by the following “modified maximum
principle”.

Theorem 7.2.2 (The Modified Maximum Principle Under State Constraints).
For Problem 7.1.2 suppose state x� is such that

hz�; x�i D ¡.z� j X Œ£�/:

Then the control u�.t/, which steers the system (7.30) from x�.t0/ D x�0 to x�.£/ D
x� under constraints u.t/ 2 E.p.t/; P.t//; x.t/ 2 E.y.t/; Y.t// while ensuring

hz�; x�i D maxfhz�; xi j x 2 X Œ£�g;

1The boundary @X Œ£� of X Œ£� may be defined as the set @X Œ£� D X Œ£� n intX Œ£�. Under the
controllability assumption, X Œ£� has a nonempty interior, intX Œ£� 6D ;; £ > t0.
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satisfies the following pointwise “maximum principle” for the control .s 2 Œt0; £�/:

z�0

G0.£; s/B.s/; u�.s/ D max
u

fz�0

G0.£; s/B.s/u j u 2 E.p.s/; P.s//g (7.54)

D hz�; G00
.£; s/B.s/p.s/iChz�; G0.£; s/B.s/P.s/B 0.s/G0.£; s/z�i1=2; s 2 Œt0; £�;

and the “maximum conditions” for the system trajectory (pointwise),

z�0

G0.£; s/L0.s/x�.s/ D max
p

fz�0

G0.£; s/L0.s/p j p 2 E.y.s/; Y.s//g (7.55)

D z�0

G0.£; s/L0.s/y.s/ C hz�; G0.£; s/L0.s/Y.s/L00
.s/G00

.£; s/z�i1=2;

and the initial state,

.z�; G0.£; t0/x�0/ D maxfhz�; xi j x 2 G0.£; t0/E.x0; X0/g D ¡.z� j G0.£; t0/E.x0; X0//

(7.56)
D hz�; G0.£; t0/x0i C hz�; G0.£; t0/X0G00

.£; t0/z�i1=2:

Here G0.£; s/ stands for the matrix function G.£; s/ taken for L0.s/—the minimizer
of problem (7.53).

The function h.£; s/ D z�0G0.£; s/B.s/ is taken right-continuous.2

Remark 7.2.2. Suppose we want to solve Problem 7.1.2, seeking ¡.l�.t/ j X Œt �/

along a curve l�.t/; t > t0: Then, taking l�.t/ D z�0.G0/�1.t; s/, one may observe
that the integrands in functional ˆ.l�.t/; L0.�/; t; t0/ of (7.47)–(7.51) will be
independent of t . This property ensures the existence of a recurrent computational
procedure, as indicated in the next section (see also Sect. 2.3). The modified
maximum principle of this section thus allows a solution in recurrent form. This
is not the case for the standard maximum principle.

We now pass to the construction of ellipsoidal approximations for the reach sets.

7.2.2 External Ellipsoids

Despite the linearity of the system, the direct calculation of reach sets is rather
difficult. Among effective methods for such calculations are those that rely on
ellipsoidal techniques. Indeed, although the initial set E.x0; X0/ and the control
set E.p.t/; P .t// are ellipsoids, the reach set X Œt � D X .t; t0; E.x0; X0// will of
course not generally be an ellipsoid.

2In the general case, under Assumption 7.2.1, the optimal trajectory may visit the smooth boundary
of the state constraint for a countable set of closed intervals, and function L0

�
.�/ allows not more

than a countable set of discontinuities of the first order.
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As shown in Chap. 3, in the absence of state constraints the reach set X Œt � may be
approximated both externally and internally by ellipsoids E� and EC, with E� 	
X Œt � 	 EC. Here we deal only with external approximations, but taken under state
constraints.

An approximation E.xC; XC/ is said to be tight if there exists a vector z 2 Rn

such that ¡.z j E.xC; XC// D ¡.z j X Œt �/ (the ellipsoid E.xC; XC/ touches X Œt �

along direction z). We shall look for external approximations that are tight, on the
one hand, and are also recursively computable, on the other.

In order to apply ellipsoidal techniques to state-constrained problems, recall
Lemma 7.2.1 and Corollary 7.2.1, which indicate how the reach set X Œt � D
X .t; t0; X 0/ may be presented as an intersection of reach sets XL or XL for
system (7.30) without state constraints. We first study how to approximate sets XL

by ellipsoids.
To demonstrate the nature of the procedures suggested in this section we shall

introduce the ellipsoidal technique in two stages. First, transform the system
coordinates in (7.30) from x to z according to the formula z.t/ D S.t; t0/x.t/,
with

dS.t; t0/=dt D �S.t; t0/A.t/; S.t0; t0/ D I:

Then system (7.30) and state constraint x.t/ 2 Y .t/ transform into

Pz D S.t; t0/B.t/u D BN .t/u; (7.57)

z.t/ 2 S.t; t0/E.y.t/; Y.t//; z.t0/ 2 S.t; t0/E.x0; X0/;

while the constraint on control u 2 P .t/ D E.p.t/; P.t// remains the same.
Returning to the old notation, we will deal with system

Px D B.t/u; x.t0/ 2 E.x0; X0/; y.t/ 2 Y .t/: (7.58)

Thus, without loss of generality, in the forthcoming formulas we assume
A.t/ � 0.

Problem 7.2.1. Given a vector function l�.t/, continuously differentiable in t , find
external ellipsoids ELCŒt � D E.x�

L.t/; X�
L.t// � XLŒt � such that for all t � t0; the

equalities

¡.l�.t/ j XLŒt �/ D ¡.l�.t/ j ELCŒt �/ D hl�.t/; x�
L.t/i

hold, so that the supporting hyperplane for XLŒt � generated by l�.t/, namely, the
plane hx�x�

L.t/; l�.t/i D 0 which touches XLŒt � at point x�.t/, is also a supporting
hyperplane for ELCŒt � and touches it at the same point.

Remark 7.2.3. Under Assumption 7.2.1 for the optimal trajectories x.0/.�/ of
Problem 7.1.2 the boundary @X Œ£� of the reach set X Œ£� consists of three types
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of points, namely (I) those that are reached by x.0/.£/ without having visited the
boundary of the state constraint, then (II) those that are reached by x.0/.£/ after
having visited the boundary of the state constraint, and (III) those that lie on the
boundary of the state constraint. Since case (I) has been investigated in detail in
Chap. 3, Sects. 3.2–3.4, and case (III) is trivial, our present investigation actually
deals only with case (II).

Apart from Assumptions 7.1.4 and 7.1.5, let us assume in this section that the
functions L.�/ in what follows do not have any delta function components. (The
case when such components are present is treated in the next section.)

The solution to Problem 7.2.1 is given within the following statement.

Theorem 7.2.3. With l�.t/ given, the solution to Problem 7.2.1 is an ellipsoid
E�

LCŒt � D EL.x�
L.t/; X�

LŒt �/, in which

X�
LŒt � D

�Z t

t0

.pu.t; s/ C pY .t; s//ds C p0.t/

�
(7.59)

�
�Z t

t0

.pu.t; s//�1GL.t; s/B.s/P.s/B 0.s/G0
L.t; s/ds

C
Z t

t0

.pY .t; s//�1GL.t; s/Lt .s/Y.s/Lt 0
.s/G0

L.t; s/dsCp�1
0 .t/GL.t; t0/X0G0

L.t; t0/

�
;

and

pu.t; s/ D .l�.t/; GL.t; s/P.s/G0
L.t; s/l�.t//1=2; (7.60)

pY .t; s/ D .l�.t/; GL.t; s/Lt .s/Y.s/LtG0
L.t; s/l�.t//1=2;

p0.t/ D .l.t0/; GL.t; t0/X0G0
L.t; t0/l.t0//1=2;

with x�
L.t/ D x?

LŒt �:

This result follows from Chap. 3, Sect. 2.3. Since the calculations have to be made
for all t , the parametrizing functions pu.t; s/; pY .t; s/; s 2 Œt0; t �; p0.t/ must also
formally depend on t .

In other words, relations (7.59), (7.60) need to be calculated “afresh” for each t . It
may be more convenient for computational purposes to have them in recursive form.
As indicated in Sects. 3.3–3.4, in the absence of state constraints this could be done
by selecting function l�.t/ in an appropriate way. For the case of state constraints
we follow Remark 7.2.2, arriving at the next assumption.

Assumption 7.2.2. The function l�.t/ is of the form l�0

.t/ D l 0�GL.t0; t/, with
l� 2 Rn given.

Under Assumption 7.2.2 the function l�.t/ is the solution to the differential
equation

Pl� D L0.t/l�; l�.t0/ D l�: (7.61)
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The tight external ellipsoids to XL.t/, which are

E.x�
L.t/; X�

L.t// 
 XL.t/ 
 X Œt �;

may be described applying formulas of Sect. 3.3 to system (7.43). Each of these
ellipsoids will be an external estimate for X Œt �.

But to describe the collection of tight ellipsoids for X Œt � we have to ensure the
following property:

¡.l jX Œt �/ D minfhl; x�
L.t/i C hl; X�

LC.t/li1=2 j L.�/ 2 C00g: (7.62)

Under our assumptions the minimum over L.�/ in (7.47) is attained for any l D
l�.t/ D G0

L.t0; t/l� 2 Rn, the minimizers being denoted as Lt�.�/ 2 C00:3

But prior to moving ahead we have to investigate the following. Suppose element
Lt�.s/ is the minimizer of functional

ˆ.G0
L.t0; t/l�; L.�/; t; t0/ D ˆ.l0�; L.�/; t; t0/; l0� D .G0

L.t0; t/l�;

The question is, if we minimize function ˆ.l0�; L.�/; t C ¢; t0/; ¢ > 0; over a
larger interval Œt0; t C ¢� than before, will the minimizer LtC¢� .s/, for the latter
problem, taken within s 2 Œt0; t �, be the same as the minimizer Lt�.s/; s 2 Œt0; t �

for ˆ.l0�; L.�/; t; t0/?
The answer to this question is given by the next lemma.

Lemma 7.2.4. Taking l D l�.t/ according to Assumption 7.2.2, suppose
Lt�.s/; s 2 Œt0; t � and LtC¢� .s/; s 2 Œt0; t C ¢�; ¢ > 0, are the minimizers of
functionals ˆ.l0�; L.�/; t; t0/ and ˆ.l0�; L.�/; t C ¢; t0/, respectively. Then

Lt�.s/ � LtC¢� .s/; s 2 Œt0; t �:

The proof is achieved by contradiction. Note that under Assumption 7.2.2 and
due to Property 7.2.1 of Sect. 7.2.5 we may always take L.t/ � 0 when t < £1; t >

£2, where £1; £2 are the points of arrival and departure at the state constraint.
Following Assumption 7.2.2, we proceed further by selecting L.�/ to be the

minimizer in L of functional ˆ.l0�; L.�/; t; t0/, namely, we now take L.s/ D
Lt�.s/ D L�.s/; s 2 Œt0; t �; which depends on l�; s, but, as indicated in
Lemma 7.2.4, does not depend on t .

Let G�.t; s/ D GL.t; s/ under conditions A.t/ � 0; L.t/ � L�.t/.
Then pu.t; s/; pY .t; s/; p0.t/ of (7.60) transform into

pu.t; s/ D hl�; G�.t0; s/B.s/P.s/B 0.s/G0�.t0; s/l�i1=2 D pu.s/; (7.63)

pY .t; s/ D hl�; G�.t0; s/L�.s/Y.s/L�0.s/G0�.t0; s/l�i1=2 D pY .s/;

p0.t/ D hl�; X0l�i1=2 D p0I

3The same minimum value is also attained here in classes of functions broader than C00.
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matrix X�
LŒt � transforms into

X�CŒt � D
�Z t

t0

.pu.s/ C pY .s//ds C p0

�
� (7.64)

�
�Z t

t0

.pu.s//�1G�.t0; s/B.s/P.s/B 0.s/G0�.t0; s/ds

C
Z t

t0

.pY .s//�1G�.t0; s/L�.s/Y.s/L�0.s/G0�.t0; s/ds C p�1
0 X0

�
;

and the functional ˆ.l�.t/; L�.�/; t; t0/ transforms into

ˆ.l�.t/; L�.�/; t; t0/ (7.65)

D hl�; x�.t/i C hl�; X0l�i1=2 C
Z t

t0

hl�; G�.t0; s/B.s/P.s/B 0.s/G0�.t0; s/l�i1=2ds

C
Z t

t0

hl�; G�.t0; s/L�.s/Y.s/L0�.s/G0�.t0; s/l�i1=2ds;

with x�
L.t/ transformed into

x�CŒt � D x0 C
Z t

t0

G�.t0; s/.B.s/p.s/ C L�.s/y.s//ds:

We may now differentiate X�CŒt �; x�CŒt �. According to Sect. 7.2.5 “Specifics”,
below, in Sect. 7.2.5, the necessary condition (7.84) for a jump in L�.t/ is not
fulfilled, and therefore L�.t/ � L0.t/.

Denoting

�u.t/ D pu.t/

�Z t

t0

.pu.s/ C pY .s//ds C p0

��1

;

�Y .t/ D pY .t/

�Z t

t0

.pu.s/ C pY .s//ds C p0

��1

; (7.66)

and differentiating X�CŒt �; x�CŒt �, we arrive at

PX�CŒt � D .�u.t/ C �Y .t//X�CŒt � C .�u.t//�1G�.t0; t/B.t/P.t/B 0.t/G�0.t0; t/

(7.67)C.�Y .t//�1G�.t0; t/L�.t/Y.t/L0�.t/G�0.t0; t/;

Px�CŒt � D G�.t0; t/.B.t/p.t/ C L�.t/y.//; (7.68)

X�CŒt0� D X0; x�Œt0� D x0: (7.69)



7.2 State-Constrained Control: Computation 299

Returning to function l�.t/ D G0
L.t0; t/l� with GL.t; s/ D G�.t; s/, we have

XCŒt � D G�.t; t0/X�CŒt �G0�.t; t0/

and

PXCŒt � D �L�.t/XCŒt � � XCŒt �L�.t/0 C G�.t; t0/ PX�CŒt �G0�.t; t0/; (7.70)

so that

PXCŒt � D �L�.t/XCŒt � � XCŒt �L0�.t/ (7.71)

C.�u.t/ C �Y .t//XCŒt � C .�u.t//�1B.t/P.t/B 0.t/ C .�Y .t//�1L�.t/Y.t/L�0.t/

and

PxC D �L�.t/xC C B.t/p.t/ C L�.t/y.t/:

Finally, returning to the case A.t/ 6D 0, we have

XCŒt � D S.t0; t/XCŒt �S 0.t0; t/; x.t/ D S.t0; t/xC.t/;

PXCŒt � D .A.t/ � L�.t//XCŒt � C XCŒt �.A0.t/ � L0�.t// (7.72)

C .�u.t/ C �Y .t//XCŒt � C .�u.t//�1B.t/P.t/B 0.t/

C .�Y .t//�1L�.t/Y.t/L�0.t/; XCŒt0� D X0;

and

Px D .A.t/ � L�.t//x C B.t/p.t/ C L�.t/y.t/; x.t0/ D x0: (7.73)

Rewriting �u.t/; �Y .t/ following schemes of [181], p. 189, for these items (see
also below: Remark 7.2.6 of Sect. 7.2.5), we have

�u.t/ D hl�.t/; B.t/P.t/B 0.t/l�.t/i1=2=hl�.t/; XC.t/l�.t/i1=2; (7.74)

�Y .t/ D .l�.t/; L�.t/Y.t/L0�.t/l�.t//1=2=.l�.t/; XC.t/l�.t//1=2:

Summarizing the results we come to the following.

Theorem 7.2.4. With shape matrix Y.t/ of the state constraint being nondegen-
erate and if, under Assumptions 7.1.4, 7.2.1, and 7.2.2, the multipliers L�.t/

responsible for the state constraint have no jumps (dƒ.t/ D œ.t/dt/, then the
external ellipsoids E.xŒt �; XCŒt �/ 
 X Œt � have the form (7.72), (7.73) with XŒt0� D
X0; xŒt0� D x0.
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Moreover, with l�.t/ D G�0.t0; t/l�; l� 2 Rn, the ellipsoids E.xŒt �; XŒt �/ touch
the set X Œt � along the curve x�.t/ which satisfies the condition

hl�.t/; x�.t/i D ¡.l�.t/ j X Œt �/; t � £1; t � £2;

so that

hl�.t/; x�.t/i D ¡.l�.t/ j X Œt �/ D ¡.l�.t/ j E.xŒt �; XCŒt �//: (7.75)

On the state constraint boundary, with t 2 Œ£1; £2�, the trajectory which
satisfies the first equality of (7.75) may be uniquely determined by the maximum
condition (7.55).

The overall procedure of calculation for Problem 7.1.2 starting from a point in
the interior of the state constraint is as follows.

(i) Consider an array of initial vectors l� located on the unit ball B.0/ in Rn. Then
for each l� proceed as follows (possibly, in parallel).

(ii) For each l� construct the array of external ellipsoids ECŒ£�l� for Problem 7.1.2
of system (7.30) without state constraints following the explicit formulas of
Sects. 3.2–3.4.

(iii) Construct the array of ellipsoids E.xŒt �; XŒt �/, namely,

(iii-a) for a given l 0� find related l�0.t/ D l 0�G�.t0; t/ and, further on, the related
curve x.0/.t/ for the reachability problem without state constraints. Note
that on the interval Œt0; £1/, where L�.t/ � 0, we have

x.0/.t/ D x�.t/ C XC.t/l�.t/hl�.t/; XC.t/l�.t/i1=2;

where explicit relations for elements x�.t/; XC.t/ of this formula are
indicated in Remark 7.2.6 of Sect. 7.2.5. Follow curve x.0/.t/ until the
state constraint boundary is reached at time, say, £1;

(iii-b) for l�.£1/ solve the optimization problem (7.49) over L.�/. Use
Lemma 7.2.5 of the appendix for additional information on optimizer
L�.�/, taking £2 as a parameter which varies within interval Œ£1; £�;

(iii-c) given optimizer L�.�/, which depends on the selected l�, solve
Eqs. (7.72), (7.73), determining the related external ellipsoid
El�.xŒt �; XCŒt �/.

(iv) In view of Remark 7.2.3, the intersection

\
fECŒ£�l� jl� 2 B.0/g

\
fEl�.xŒt �; XCŒt �/ j l� 2 B.0/g

\
E.y.£/; Y.£// D XaŒ£� 
 X Œ£�

is an external approximation of X Œ£�. Loosely speaking, the greater is the
number of vectors l� used as starting points of the calculations, the more
accurate will be the approximation Xa.
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Remark 7.2.4. If it is not necessary to find the tight external approximations for the
exact reach set X Œ£�, but a conservative estimate of X Œ£� using only one ellipsoid
would suffice, then there is no need to solve optimization problem (7.46) in L, since
ellipsoids E.xŒt �; XCŒt �/, defined by (7.72), (7.73), happen to be external estimates
of X Œ£� for all L.�/. One may single out one of these through some appropriate
criterion.

An obviously conservative estimate may also be obtained by intersecting the
reach set without state constraints with the ellipsoid that defines the state constraint.
The objective of this paper, however, is to indicate the calculation of the exact reach
set under state constraints, especially when the state constraint produces a reach set
different from the one without state constraints.

We now pass to the more general case, in which the multipliers may have delta
function components.

7.2.3 Generalized Multipliers

In this section, Assumptions 7.1.4 (of Sect. 7.1.3) and 7.2.1 (of Sect. 7.2.1) and the
conditions of Lemma 7.1.6 are taken to be true together with Assumption 7.1.5. This
allows us to consider ellipsoidal approximations without the additional requirement
of Property 7.2.2 of Sect. 7.2.5.

Now functional ˆ.l; L.�/; £; t0/ has the form (7.65), and its minimizer for a given
l D l�.£/ is of the form

L0.t/ D L0�.t/ C L0
1•.t � £1/ C L0

2•.t � £2/

for all l�.£/ with L0�.t/ absolutely continuous and L0�.t/ � 0 whenever x�.t/ 2
intY .t/. Then the respective transition matrix is G.t; s/ D G0�.t; s/ and l�.t/ D
G0�

0
.t; s/l�.

Here L0.�/ may be interpreted as the generalized derivative of a generalized
Lagrange multiplier ƒ00.�/ similar to ƒ.0/.�/ of Sect. 7.2.1. ƒ00.�/ is piecewise
absolutely right-continuous, with possible jumps at points £1; £2 and possible jumps
at t0 and/or £ (when it happens that t0 D £1 and/or £ D £2). ƒ00.t/ � const,
whenever x�.t/ 2 intY .t/.

Following the reasoning of the previous section, we may derive equations
for the approximating external ellipsoids similar to (7.72), (7.73). The necessary
prerequisites for such a move are similar to Lemma 7.2.4 and Theorems 7.2.3
and 7.2.4.

Thus, we come to equations for tight external ellipsoids:

dxC D ..A.t/�L0�.t//xCC.B.t/p.t/CL0�.t/y.t//dt�
2X

iD1

L0
i .xC�y.t//d¦.t; £i /;

(7.76)

dXCŒt � D ..A.t/ � L0�.t//XCŒt � C XCŒt �.A0.t/ � L0�
0
.t///dt (7.77)
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C
 

�u.t/ C �Y .t/ C
kX

iD1

�i

!
XCŒt �dt C .�u.t//�1B.t/P.t/B 0.t/dt

C.�Y .t//�1L0�.t/Y.t/L00

� .t/dt C
2X

iD1

��1
i L0

i Y.t/L00

i d¦.t; £i /;

XCŒt0� D X0; xC.t0/ D x0:

The �i > 0 are additional parametrizing coefficients similar to �Y .t/.
The last equation may be interpreted as before (see Remark 7.2.1).

Theorem 7.2.5. Under Assumptions 7.1.5, 7.2.1, 7.2.2, and those of Lemma 7.1.6
with l�.t/ D G00

� .t0; t/l�; l� 2 Rn, the external ellipsoids E.xC.t/; XCŒt �/ 
 X Œt �

have the form (7.76), (7.77) with XCŒt0� D X0; xC.t0/ D x0. One may select
the parametrizing coefficients �u; �Y.t/; �i so that ellipsoids E.xC.t/; XCŒt �/ would
touch set X Œt � along the curve xC.t/, which satisfies condition (7.75).

If the optimal trajectories visit the boundary of the state constraint m > 1 times,
then the reasoning is the same as in the above, and the sums in (7.76), (7.77) will
have additional 2m terms.

Remark 7.2.5. The results of Sects. 7.2.2 and 7.2.3 remain true if the state constraint
is applied to a system output z.t/ D T x.t/; z 2 Rk; k < n; rather than to the whole
state vector x. The state constraint Y is then given by an elliptical cylinder in Rn.
The proofs may be achieved either by directly following the scheme of this Chap. 7
or by substituting the elliptical cylinder with an ellipsoid having n � k axes of size
r followed by limit transition r ! 1.

7.2.4 An Example

The system is the double integrator:

Px1 D x2; Px2 D u; x.0/ D 0; (7.78)

under constraints

juj � �; jx2j � �: (7.79)

We wish to find the reach set X Œ£� at time £ > 0.
The state constraint may be treated either directly or as a limit as – ! 0 of the

ellipsoid ©2x2
1 C x2

2 � �2.
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The treatment of this example indicates the following boundary types:

1. The boundary of the reach set X Œ£� at each time £ consists of three types of points
as follows:

(a) points reached without visiting the boundary of the state constraint;
(b) points reached after visiting the boundary of the state constraint for some time;
(c) points on the boundary of the state constraint.

2. Each optimal trajectory x.0/.t/, for given l 2 R2, visits the state constraint not
more than once.

3. The necessary conditions for a jump of the multiplier responsible for the state
constraint are not fulfilled, so there are no jumps.

4. Assumption 7.2.3 of Sect. 7.2.5 is fulfilled (see below)

Case 1(a) is treated according to Chap. 3, while case 1(c) is trivial. Therefore we
concentrate on case 1(b).

The exact parametric equations for case 1(b) may be derived, by minimizing over
˜ the functional

¡.l jX Œ£�/ D min

�
�

Z £

0

js2.t/jdŸ C �

Z £

0

j˜.t/jdŸ j ˜.�/
�

; (7.80)

where s2.t/ D �l1.£ � t / C l2 � R £

t
˜.Ÿ/dŸ is the solution to the adjoint equation

Ps1 D 0; Ps2 D �s1 C ˜.t/; s1.£/ D l1; s2.£/ D l2:

This gives parametric equations for a part of the boundary @X Œ£�, which is:

x1 D ��.£ � ¢/2=2 C c; x2 D �¢ C d; £1 � ¢ � £:

Here £1 D �=� < £ is the first instance when the trajectory reaches the boundary
of the state constraint, while ¢ is a parameter that indicates the instance of £2 when
the trajectory leaves this boundary. Also c D �£ � �2=2�I d D � � �£: Note that
we have used Assumption 7.1.4 of Sect. 7.2.1, which implies that optimizer ˜0.t/

satisfies relations

˜0.t/ � l1; t 2 Œ£1; £2�; ˜0.t/ � 0; t 62 Œ£1; £2�;

and s1.t/ � l1.
A typical trajectory for case 1(b) is when it reaches the boundary of the state

constraint at time £1 and then runs along the boundary and leaves it at time £2. Later
it runs toward the boundary @X Œ£� while staying in the interior of the constraint.

For the interval Œ0; £�, the adjoint system given above, when written in matrix
form (7.42), is

PS D �SA.t/ C M.t/˜.t/: (7.81)
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To solve the problem through a numerical procedure involving external ellip-
soids, using recursive formula and following Sect. 7.2.2, transform the adjoint
Eq. (7.81) of the above into the modified form

PSL D �SL.A.t/ � L.t//; SL.£/ D I:

Taking l� D l�.0/, we will have l 0�M.t/˜0.t/ D .0; 1/˜0.t/ when t 2 Œ£1; £2�.
This yields M.t/ D M0.t/ depending on ˜0. Direct calculation then allows one to
find for each l� the relation

for the optimizer L�.t/ of (7.53). This is

L�.t/ D SM0.t/
�1M0.t/; t 2 Œ£1; £2�;

with L�.t/ � 0 when t < £1; t > £2. Here SM0.t/ is the solution to (7.81) with
initial condition SM0.£/ D I and M.t/ � 0; t; £1; t > £2.

Recalling the ellipsoidal equations, we have

PX D .A.t/ � L.t//X C X.A.t/ � L.t//0 (7.82)

C.�u.t/ C �Y .t//X C ��1
u .t/BP.t/B 0 C ��1

Y .t/L.t/Y.t/L0.t/:

Here one should take L.t/ D L�.t/ and �u; �Y according to (7.74).
The algorithm for this example involves the following steps:

1. For the given starting direction l� find time £1 D �=� of the first exit (i.e.,
encounter with the boundary of the state constraint).

2. Solve extremal problem (7.80), determining l1 D ˜0 D const and l2, for each
£2 D ¢ 2 Œ£1; £�.

3. Construct the ellipsoidal approximations for the system without constraint t �
£1, taking L.t/ � 0. Denote these as E.0; XC

l .t //.
4. For each £2 D ¢ 2 Œ£1; £� construct the ellipsoidal approximation follow-

ing (7.82).

The part of the boundary related to case (b) is described by the boundary of the
intersection E.0; X.£// \ L.�/ where L.�/ is actually reduced to parameter ¢ D £2.
Denote this intersection as E.0; XC

¢ .£//.
The total reach set is the intersection of approximations for each group 1(a), 1(b),

and 1(c), namely,

X Œ£� D X .£; 0; 0/ D
\

l

E.0; XC
l .£//

\
¢

E.0; XC
¢ .£//

\
E.0; Y /:

Figure 7.1 shows the structure of the reach set boundary, given here by a thick
line. The system trajectory OAG reaches its end point G without visiting the
boundary of the state constraint. Point G is attained at time £. It lies on the reach
set boundary of type 1(a) (see beginning of this Sect. 7.2.4). Trajectory OBF visits
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Fig. 7.1 Reach set: structure of the boundary

the boundary of the state constraint at only one point £1 D £2 < £. Its end point
F is of both types 1(a) and 1(b). Trajectory OBCE lies on the boundary of the state
constraint during the interval Œ£1; £2/ with £1 < £2 < £, and its end point E lies on
the reach set boundary of type 1(b). Finally, trajectory OBD reaches the boundary
of the state constraint at time £2 < £ and lies on it until final time £, so that point D
is of both types 1(b) and 1(c). Thus, the part of the reach set boundary along points
BDEFGH consists of segments BD [of type 1(c)], DF [of type 1(b)], and FGH [of
type 1(a)].

Figure 7.2 shows the structure of the generalized Lagrange multiplier ˜.t/ for the
case of trajectory x2.t/ of type OBCE shown in the top of the figure. Here ˜ � 0 on
intervals Œ0; £1/ and Œ£2; £� and ˜ � const on Œ£1; £2/. Note that the related trajectory
x2.t/ runs along the boundary of the state constraint during the interval Œ£1; £2/,
where ˜.t/ 6D 0. Points £1; £2 potentially could have •-functions as components
of ˜. But the necessary conditions for the existence of such components are not
fulfilled in this example.

Figure 7.3 shows an external ellipsoid (thin line) for the boundary of the reach
set under state constraints (thick line), indicating its difference from the reach set
without state constraints (dash-dotted line). Figure 7.4 illustrates the final reach tube
with and without state constraints for this example.4

4The computer illustrations for this subsection were made by M.N. Kirilin.
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Fig. 7.2 Structure of multiplier ˜

Fig. 7.3 External ellipsoid at boundary point of type (b)
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Fig. 7.4 Reach tubes with and without state constraints

7.2.5 Specifics: Helpful Facts for State-Constrained
Control Design

In this subsection we present some additional facts useful for proving the main
assertions of this paper.

One difficulty in solving the control problem under state constraints (Prob-
lem 7.1.2) is to determine the set of times ft W x.t/ 2 @Y .t/g. This is a union of
closed intervals during which the optimal trajectory is on the boundary of the state
constraint.

Here are some helpful facts. For Problem 7.1.2 the Properties 7.2.1–7.2.3 are
given below under Assumptions 7.1.4 and 7.2.1,

Property 7.2.1. For any l 2 Rn, the minimizer of (7.35) is ƒ.0/.t/ D const and
in (7.39) the corresponding minimizer is œ.0/.t/ D const during time intervals for
which x.t/ 2 intY .t/, the interior of Y .t/.

Since l 0M .0/.t/dœ.0/.t/ D dƒ.0/.t/; we may track whether the trajectory is on the
boundary of Y .t/ by the multiplier œ.0/.t/. Thus, we need not be interested in values
of M .0/.t/ when the trajectory is not on the boundary @Y .t/.

Property 7.2.2. Suppose l 2 Rn is given and x.0/.t/ is the solution of
Problem 7.1.2. For the function ƒ.0/.t/ to have a jump at t�, under the smoothness
conditions on the state constraint of Lemma 7.1.6, t� must be a time of arrival
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or departure from the boundary of the tube E.y.t/; Y.t//; t0 � t � £, and the
trajectory x.0/.t/ must be tangent to the tube E.y.t/; Y.t// at t�. Thus, x.0/.t/ is
differentiable at t� and

h¦; Px.0/.t� � 0/i D h¦; Px.0/.t� C 0/i D 0: (7.83)

Here ¦ is the support vector to the state constraint Y .t�/ at x.0/.t�/. In general, if
the jump is ƒ.t� C 0/ � ƒ.t� � 0/ D ¦, then the necessary condition for such a
jump is

h¦; Px.0/.t� C 0/ � Px.0/.t� � 0/i � 0: (7.84)

For example, if x.0/.t� � ¢/; ¢ > 0, lies inside the interior of the constraint set and
x.t� C ¢/ lies on the boundary, then

h¦; Px.0/.t� C 0/ � Px.0/.t� � 0/i � 0;

and (7.84) will be fulfilled only if this inner product equals zero.
We also need the following assumption.

Assumption 7.2.3. For Problem 7.1.2, with given l , there exists no control u�.s/

that satisfies the maximum principle

l 0S.s; £ j M .0/.�/; œ.0/.�//B.s/u�.s/

D maxfl 0S.s; £ j M .0/.�/; œ.0/.�//B.s/u j u 2 E.p.s/; P.s//g

for fs j l 0S.s; £ j M .0/.�/; œ.0/.�//B.s/ 6D 0g and at the same time ensures for these
values of s that the corresponding trajectory x�.s/ 2 @Y .s/.

Property 7.2.3. Assumption 7.2.3 holds.

This means that if the control u.0/.s/ is determined by the maximum principle,
with h.0/.£; s/ D l 0S.s; £ j M .0/.�/; œ.0/.�//B.s/ 6D 0, and therefore attains its
extremal values under given hard bounds, then this control cannot also keep the
corresponding trajectory x.0/.s/ along the boundary @Y .s/. In other words, in this
case the maximum principle is degenerate along the state constraint, i.e. h.0/.£; s/ �
0 and does not help to find the control when the trajectory lies on the boundary
@Y .s/.

This assumption excludes the case when solution of Problem 7.1.2 without state
constraints already satisfies the given state constraints, which therefore turn out to
be passive.

Lemma 7.2.5. Under Assumption 7.83 applied to Problem 7.1, the function

h.0/.£; s/ D l 0S.s; £ j M .0/.�/; œ.0/.�//B.s/ � 0

whenever x.0/.s/ 2 @Y .s/.
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Remark 7.2.6. Recall that equations for tight external ellipsoids without state
constraints are explained in detail in Chap. 3, Sects. 3.2–3.3, being described by
equations (see (3.59), (3.60), (3.17))

Px� D A.t/x� C B.t/p.t/; x�.t0/ D x0;

PX�C D A.t/XC C XCA0.t/ C �.t/XC C ��1.t/P.t/; XC.t0/ D X0;

l�.t/ D �A.t/0l�.t/; l�.t0/ D l�;

and

�.t/ D hl�.t/; B.t/P.t/B 0.t/l�.t/i1=2=hl�.t/; XC.t/l�.t/i1=2:

Exercise 7.2.1. Compare equations of Remark 7.2.6 with (7.72)–(7.73) derived
under state constraints.



Chapter 8
Trajectory Tubes State-Constrained
Feedback Control

Abstract This chapter begins with the theory of trajectory tubes which are
necessary elements of realistic mathematical models for controlled processes and
their evolutionary dynamics. We then deal with the evolution in time of state-
constrained forward and backward reachability tubes also known as “viability
tubes.” The backward tubes are then used to design feedback controls under state
constraints that may also appear in the form of obstacles to be avoided by system
trajectories.

Keywords Trajectory tubes • Viable solutions • Funnel equations • Feedback
control • Obstacle problems

In this chapter we study the evolution of trajectory tubes. These tubes are needed
for problems of dynamics and control, especially those that deal with incompletely
described systems. Such a theory of trajectory tubes was introduced in [158]
and is described here in appropriate form for the topics of this book. The theory
is then applied to state-constrained reachability (“reach”) tubes, also known as
“viability tubes.” We introduce the technical tools in set-valued dynamics that are
used for calculating such tubes. These backward tubes are then used to define state-
constrained closed-loop strategies for target control. Finally we study similar issues
for obstacle problems that generate a class of more complex state constraints: the
target-oriented trajectories should develop within a bounded control set while also
avoiding obstacles that lie on route to the target set. Throughout the investigations
we assume that the notions of continuity and measurability of single-valued and
multivalued maps are taken in the sense of [41, 238].

8.1 The Theory of Trajectory Tubes: Set-Valued
Evolution Equations

We start with a definition of trajectory tubes that are at the object of further
discussion.

© Springer International Publishing Switzerland 2014
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8.1.1 Trajectory Tubes and the Generalized Dynamic System

Consider the nonlinear differential inclusion derived from Sect. 7.1 , (7.1), (7.2),

Px 2 F .t; x/; t 2 T; x.t0/ D x0 2 X 0 2 compRn; (8.1)

with F .t; x/ D f .t; x; P .t//,
Assume that F .t; x/ satisfies the Lipschitz condition with constant k > 0

h.F .t; x0/; F .t; x00// � kkx0 � x00k; 8x0; x00 2 Rn: (8.2)

Taking set X 0 2 compRn to be given, denote, as before, xŒt � D x.t; t0; x0/, t0 2
T D Œt0; t1�; to be a solution of (8.1) (an isolated trajectory) that starts at point
xŒt0� D x0 2 X 0.1

We regard the solution to be a Caratheodory-type trajectory xŒ��, namely, an
absolutely continuous function xŒt � (t 2 T ) that satisfies the inclusion

dxŒt �=dt D PxŒt � 2 F .t; xŒt �/; xŒt0� D x0 (8.3)

for almost all t 2 T .
We require all solutions fxŒt � D x.t; t0; x0/ j x0 2 X0g to be extendible up to

time t1 [7, 26, 75].
Let Y .t/ be a continuous multivalued map (Y W T ! convRn) of (7.2), that

defines the state constraint

x.t/ 2 Y .t/; t 2 T: (8.4)

The map Y .t/ may be obtained from measurement equations (considered further,
in the next chapter)

y.t/ D G.t/x C Ÿ.t/; Ÿ.t/ 2 R .t/;

so that

G.t/x.t/ 2 Y .t/ D y.t/ � R .t/; (8.5)

with y.t/ given.
A more general form could be

y.t/ 2 G.t; x/ (8.6)

1 Recall that a trajectory x.t/ of system (8.1) generated by given initial condition ft0; x0g is marked
by square brackets, as xŒt �, in contrast with an unspecified trajectory x.t/:
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where G.t; x/ is a multivalued map (G W T � Rn ! convRp). Other requirements
on G.t; x/ will be indicated below, along with specific theorems.

The problem will now consist in describing the tube XyŒ�� of solutions to
system (8.1) under state constraints (8.4), (8.5), (or (8.6)) and also the equations
for the evolution of tube XyŒt �.

As mentioned in the Preface to Chap. 7, the problem of jointly solving the system
of inclusions (8.4), (8.5), could be also treated as a version of the viability problem
[5]. The solution set to this system will be called the viable tube and defined more
precisely below.

As we will observe, the differential inclusion (8.1) with viability constraints (8.5)
may generate a class of generalized dynamic systems that are relevant for describing
tube-valued solutions to problems of dynamics and control.

We now proceed with a rigorous formulation and a constructive theory for
problems under discussion.

Definition 8.1.1 (See [5, 158]). A trajectory xŒt � D x.t; t0; x0/; .x0 2 X 0; t 2 T /

of the differential inclusion (8.1) is said to be viable on Œt0; £� £ � t1, if

xŒt � 2 Y .t/ for all t 2 Œt0; £�: (8.7)

We proceed under assumption that there exists at least one solution x�Œt � D
x�.t; t0; x�

0 / of (8.4) (together with a starting point x�Œt0� D x�
0 2 X 0) that satisfies

condition (8.7) with £ D t1. The trajectory x�Œt � is therefore assumed to be viable
on the whole segment Œt0; t1�. Conditions for the existence of such trajectories may
be given in terms of generalized duality concepts [137, 238]. Known theorems on
viability also provide the existence of such trajectories x�Œt � (see [5]).

Let X .�; t0; X0/ be the set of all solutions to inclusion (8.4) without the state
constraint (8.5) that emerge from X 0 (the “solution tube”) With X Œt � D X .t; t0; X 0/

being its cross-section at time t . Define

„ D
[

fX .t; t0; X 0/ j t0 � t � t1g

to be the integral funnel for (8.1), [224]. One may observe that under our
assumptions „ 2 compRn [8, 26].

The subset of X .�; t0; X0/ that consists of all solutions to (8.1) viable on Œt0; £�

is denoted by Xy.�; £; t0; X 0/ and its s-cross-sections as Xy.s; £; t0; X 0/, s 2 Œt0; £�.
We also use the notation

XyŒ£� D Xy.£; t0; X 0/ D Xy.£; £; t0; X 0/:

As indicated earlier, it is not difficult to observe that sets XyŒ£� are actually
the reachable sets at instant £ for the differential inclusion (8.1) with state
constraint (8.7).
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As in Chap. 7, the map Xy.t; t0; X 0/ (Xy W T �T �compRn ! compRn) satisfies
the semigroup property

Xy.t; £; Xy.£; t0; X 0// D Xy.t; t0; X 0/; t0 � £ � t � t1;

and therefore defines a generalized dynamic system with set-valued trajectories
XyŒt � D Xy.t; t0; X 0/. The multivalued functions X Œt �, XyŒt �, t 2 T , are the
trajectory tube and the viable trajectory tube, respectively.

8.1.2 Some Basic Assumptions

We will usually work under one of the two following groups of hypotheses, unless
otherwise noted.

Denote the graph of map F .t; �/ as grapht F (t is fixed):

grapht F D ffx; zg 2 Rn�n j z 2 F .t; x/g:

The next assumption is related to convex compact-valued tubes.

Assumption 8.1.1. 1. For some D 2 convRn such that „ 	 int D the set
.D � Rn/ \ grapht F is convex for every t 2 T .

2. There exists a solution x�Œ�� to (8.4) such that x�Œt0� 2 X 0 and

x�Œt � 2 int Y .t/; 8t 2 T:

3. The set X 0 2 convRn.

In order to formulate the next group of assumptions, related to star-shaped sets,
we recall the following notion.

Definition 8.1.2. A set St 	 Rn is said to be star-shaped (with center at c) if c 2 St
and .1 � œ/c C œSt 	 St for all œ 2 .0; 1�.

The family of all star-shaped compact sets St 	 Rn with center at c is denoted
as St.c;Rn/ and with center at 0 2 Rn as StRn.

Assumption 8.1.2. 1. For every t 2 T , one has grapht F 2 St.R2n/.
2. There exists © > 0 such that ©B.0/ 	 Y .t/ for all t 2 T; (B.0/ D fx 2

Rn j kxk � 1g/.2
3. The set X 0 2 St.Rn/.

2If Y .t/ has no interior points, being located in space Rm; m < n, then Y .t/ may be substituted
by its neighborhood Yr .t/ D Y .t/ C rB.0/ > 0; with some additional regularization.
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Observe that Assumptions 8.1.1 and 8.1.2 are overlapping, but in general neither
of them implies the other.

One important property of trajectory tubes and viable trajectory tubes is to
preserve some geometrical characteristics of sets X Œt �, XyŒt � along the system
trajectories, as in the following assertions.

Lemma 8.1.1. Under Assumption 8.1.1 the cross-sections X Œt �, XyŒt � are convex
and compact for all t 2 T (X Œt �, that is, XyŒt � 2 convRn.

Lemma 8.1.2. Under Assumption 8.1.2 the cross-sections X Œt �, XyŒt � are star-
shaped and compact for all t 2 T , that is, X Œt �, XyŒt � 2 St.Rn/.

Loosely speaking, a differential inclusion with a convex grapht F generates
convex-valued tubes X Œt �, XyŒt �, while a star-shaped grapht F generates tubes with
star-shaped cross-sections X Œt �, XyŒt �. Convexity and the star-shape property are
therefore the two simplest basic geometrical invariants for cross-sections of the
trajectory tubes and viable trajectory tubes.

8.1.3 The Set-Valued Evolution Equation

Having defined the notion of viable trajectory tube and observed that mapping
XyŒt � D Xy.t; t0; X 0/ defines a generalized dynamic system, we come to the
following natural question: does there exist some sort of evolution equation that
describes the tube XyŒt � as solutions to a related generalized dynamic system?

It should be emphasized here that the space K D fcompRng of all compact
subsets of Rn to which the “states” XyŒt � belong is only a metric space with
a rather complicated nonlinear structure. In particular, there does not exist even
an appropriate universal definition for the difference of sets A; B 2 compRn.
Hence the evolution equation for XyŒt � is devised to avoid using such “geometric”
differences. It is mainly due to this reason that the construction of an infinitesimal
generator for set-valued transition maps generated by such generalized system
dynamics is cumbersome.

In this subsection we rely on an approach to the evolution of trajectory tubes
through funnel equations for set-valued functions in contrast with Hamiltonian
techniques where this is done, as we have seen in Sect. 7.1, through single-valued
functions described by PDEs of the HJB type.

We shall further require that one of the following assumptions concerning the
mapping Y .�/ is fulfilled.

Assumption 8.1.3. The graph graph Y 2 convRnC1.

Assumption 8.1.4. For every l 2 Rn the support function f .l; t/ D ¡.l j Y .t// is
differentiable in t and its derivative @f .l; t/=@t is continuous in fl; tg.
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Theorem 8.1.1. Suppose Assumption 8.1.1 or 8.1.2 holds and map Y satisfies
either Assumption 8.1.3 or 8.1.4. Then the multifunction XyŒt � D Xy.t; t0; X 0/ is
a set-valued solution to the following evolution equation

lim
¢!C0

¢�1h
�

XyŒt C ¢�;
[

fx C ¢F .t; x/ j x 2 XyŒt �g \ Y .t C ¢/
�

D 0;

(8.8)
t0 � t � t1; XyŒt0� D X 0:

Rigorous proofs of this theorem in terms of the Hausdorff distance (see Sect. 2.3)
and of the following uniqueness theorem are rather lengthy and are given in detail
in [158, Sects. 6, 7]. The uniqueness of solution to Eq. (8.8) is indicated in the next
theorem.

Denote ZŒt0; t1� to be the set of all multivalued functions ZŒt � (Z W Œt0; t1� !
compRn) such that

lim
¢!C0

¢�1h
�

ZŒt C ¢�;
[

fx C ¢F .t; x/ j x 2 ZŒt �g \ Y .t C ¢/
�

D 0; (8.9)

ZŒt0� D X 0; t0 � t � t1;

where the Hausdorff limit in (8.9) is uniform in t 2 Œt0; t1�.
Under assumptions of Theorem 8.1.1 we have

XyŒ�� D Xy.�; t0; X 0/ 2 ZŒt0; t1�:

Theorem 8.1.2. Suppose the assumptions of Theorem 8.1.1 hold. Then the mul-
tivalued function XyŒ£� D Xy.£; t0; X 0/ is the unique solution to the funnel
equation (8.8) in the class ZŒt0; t1� of all the set-valued mappings Z.�/ that satisfy
this equation uniformly in t 2 Œt0; t1�.

8.1.4 The Funnel Equations: Specific Cases

In this subsection we indicate some examples of differential inclusions for which
Assumptions 8.1.1 and 8.1.2 are fulfilled, presenting also the specific versions of
the funnel equations.

Linear Systems

Consider the linear differential inclusion

Px 2 A.t/x C B.t/Q .t/; x.t0/ D x0 2 X 0; t0 � t � t1; (8.10)



8.1 The Theory of Trajectory Tubes: Set-Valued Evolution Equations 317

where x 2 Rn, A.t/ and B.t/ are continuous n � n- and n � m-matrices, Q .t/ is a
continuous map (Q W Œt0; t1� ! convRm), X 0 2 convRn.

Here Assumptions 8.1.1 (1), 8.1.1 (3) are fulfilled automatically. So to retain
Assumption 8.1.1 (2) we introduce

Assumption 8.1.5. There exists a solution x�Œ�� of (8.10) such that

x�Œt0� 2 X 0; x�Œt � 2 int Y .t/; 8t 2 Œt0; t1�:

The following result is a consequence of Theorem 8.1.1.

Theorem 8.1.3. Suppose Assumptions 8.1.5 and 8.1.3 or 8.1.4 hold. Then the set-
valued function XyŒt � D Xy.t; t0; X 0/ is the solution to the evolution equation

lim
¢!C0

¢�1h.XyŒt C¢�; ..I C¢A.t//XyŒt �C¢B.t/Q .t//\Y .t C¢// D 0 (8.11)

t0 � t � t1; X Œt0� D X 0:

The solution to this equation may be obtained using ellipsoidal techniques
described earlier in Chap. 3 and in Chap. 7, Sect. 7.2.

Bilinearity: Uncertainty in Coefficients of a Linear System

Consider a differential equation of type (8.1) where

f .t; x; v/ D A.t; v/x C h.t/; v.t/ 2 Q .t/;

with A.t; Q .t// D A.t/ and h.t/ 2 P .t/ unknown but bounded (P .t/ 2 convRn�n

being continuous in t ). This yields

Px 2 A.t/x C P .t/; x.t0/ D x0 2 X 0; x.t/ 2 Y .t/; t0 � t � t1; (8.12)

and the right-hand side F .t; x/ D A.t/x C P .t/ depends bilinearly upon the state
vector x and the set-valued map A .

We assume that A.�/ is a continuous mapping from Œt0; t1� into the set convRn�n

of convex and compact subsets of the space Rn�n of n � n-matrices.
Equation (8.12) is an important model of an uncertain bilinear dynamic system

with set-membership description of the unknown matrices A.t/ 2 A.t/, and inputs
h.t/ 2 P .t/ and with x0 2 X 0; [158, Sect. 3].

It is not difficult to demonstrate that here Assumption 8.1.1 does not hold, so that
sets X Œt � D X .t; t0; X 0/ (and also XyŒt � D Xy.t; t0; X 0/) need not be convex.

Example 8.1.1. Indeed, consider a differential inclusion in R2:

Px1 2 Œ�1; 1�x2; Px2 D 0; 0 � t � 1;
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with initial condition

x.0/ D x0 2 X 0 D fx D .x1; x2/ j x1 D 0; jx2j � 1=2g

Then

X Œ1� D X .1; 0; X 0/ D X1 [ X2;

where

X1Dfx D .x1; x2/ j jx1j � x2 � 1=2g; X2Dfx D .x1; x2/ j jx1j � �x2 � 1=2g:

It is obvious that set X Œ1� is not convex.

However one can verify that though Assumption 8.1.1 is not fulfilled for the
system (8.12), the Assumption 8.1.2 (1) is indeed satisfied, provided 0 2 X 0 and 0 2
P .t/ for all t 2 Œt0; t1�. Assumption 8.1.2 may hence be rewritten in the following
reduced form.

Assumption 8.1.6. 1. Condition 0 2 P .t/ is true for all t 2 Œt0; t1�.
2. There exists an © > 0 such that ©B.0/ 	 Y .t/, 8t 2 Œt0; t1�.
3. Set X 0 2 St.Rn/ and 0 2 X 0.

To formulate an analog of Theorem 8.1.1 we introduce an additional notation:
M � X D fz D Mx 2 Rn j M 2 M ; x 2 X g, where M 2 convRn�n, X 2
convRn�n.

Theorem 8.1.4. Under Assumptions 8.1.6 and 8.1.3 or 8.1.4 the set-valued map
XyŒt � D Xy.t; t0; X 0/ is the solution to the following evolution equation

lim
¢!C0

¢�1h.XyŒt C ¢�; ..I C ¢A.t// � XyŒt � C ¢P .t// \ Y .t C ¢// D 0; (8.13)

t0 � t � t1; X Œt0� D X 0:

A Nonlinear Example

We indicate one more example, which is given by a set-valued function F .t; x/ with
a star-shaped grapht F .

Namely, let F .t; x/ be of the form

F .t; x/ D G.t; x/U C P .t/; (8.14)

where the n � n-matrix function G.t; x/ is continuous in t , Lipschitz-continuous
in x and F .t; x/ is positively homogeneous in U 2 convRn. The map P .t/ is the
same as before. One may immediately verify that now Assumption 8.1.2 (1) holds,
so that the cross-section XyŒt � of the solution tube to Eq. (8.13) is star-shaped.
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8.1.5 Evolution Equation Under Relaxed Conditions

We now mention an approach similar to the described, but with the evolution
equation (8.8) written using the Hausdorff semidistance

hC.A; B/ D max
a

min
b

fka � bk j a 2 A; b 2 Bg; A; B 2 compRn;

rather than the Hausdorff distance (a metric) h.A; B/ D maxfhC.A; B/; hC.B; A/g.
Here is such an equation (see [174] and also [163]) for system (7.1), (7.2):

lim
¢!C0

1

¢
hC
 

ZŒt C ¢�;
[(

x C ¢.f .t; x; P .t//

ˇ̌
ˇ̌
ˇ x 2 ZŒt � \ Y .t/

)!
D 0; Z.t0/ D X 0;

(8.15)

Remark 8.1.1. The solution ZŒt � to this evolution equation is a multivalued function
with ZŒt0� D X 0; which satisfies (8.15) almost everywhere. As a rule, this solution
is not unique. However, we may single out a solution X Œt � which is the inclusion-
maximal among all solutions ZŒt � to (8.15). Namely, X Œt � � ZŒt �, where ZŒt �

is any solution that starts from Z.t0/ D X 0: Note that Eq. (8.15) makes sense
for any piecewise continuous function y.t/. As mentioned above, when dealing
with information tubes, we presume these functions to be right-continuous. The
hC-techniques may be more adequate for dealing with discontinuous set-valued
functions XyŒt � D Xy.t; t0; X0/.

The evolution equation (8.15) delivers a formal model for the generalized
dynamic system generated by mapping XyŒt � D Xy.t; t0; X 0

y /. However, if the sets
XyŒt � are convex, there exists an alternative presentation of this evolutionary system.
Namely, each of the sets XyŒt � could be described by its support function

®.l; t/ D ¡.l j XyŒt �/ D maxf.l; x/ j x 2 XyŒt �g:

The dynamics of XyŒt � would then be reflected by a generalized partial
differential equation for ®.l; t/. The description of this equation is the next issue
to be discussed.

8.2 Viability Tubes and Their Calculation

8.2.1 The Evolution Equation as a Generalized Partial
Differential Equation

In this section we restrict our attention to a system for which Assumption 8.1.1 is
satisfied. In this case the tube Xy.�; £; t0; X 0/ will be a convex compact subset of
C nŒt0; t1�. With set XyŒ£� D Xy.£; t0; X 0

y / 2 convRn for every £ 2 Œt0; t1�.
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Since there is an equivalence between an inclusion x 2 X and the system of
inequalities .l; x/ � ¡.l j X /, 8l 2 Rn, we may now describe the evolution of sets
XyŒ£� through differential relations for the support function ®.l; t/ D ¡.l j XyŒt �/.
The primary problem on the law of evolution for multivalued “states” XyŒt � will now
be replaced by one of evolution in time of a distribution ¥t .l/ D ®.l; t/ which is
defined over all l 2 Rn, and is positively homogeneous and convex in l .

We now calculate the directional derivative

@C®.l; t/=@t D lim
¢!C0

¢�1.®.l; t C ¢/ � ®.l; t//

for each instant t 2 Œt0; t1� and for any fixed l 2 Rn.
The next result will be proved as a direct consequence of Theorem 8.1.1.

Theorem 8.2.1. Suppose Assumptions 8.1.1 together with either 8.1.3 or 8.1.4
hold. Then the support function ®.l; t/ D ¡.l j XyŒt �/ is right-differentiable in t

and its directional derivative in time is

@C®.l; t/=@t D min
q

max
x

f§.q; x; l; t/ j q 2 Q.l; t/; x 2 @l®.l; t/g D

D max
x

min
q

f§.q; x; l; t/ j x 2 @l®.l; t/; q 2 Q.l; t/g; (8.16)

where

§.q; x; l; t/ D ¡.q j F .t; x// C @¡.l � q j Y .t//=@t; (8.17)

Q.l; t/ D fq 2 Rn j ®.l; t/ � ®.q; t/ D ¡.l � q j Y .t//g; @l®.l; t/

D fx 2 XyŒt � j .l; x/ D ®.l; t/g:

Proof. From Theorem 8.1.1 we deduce

®.l; t C ¢/ D ¡.l j R.¢; t; XyŒt �/ \ Y .t C ¢// C o.¢/klk;

where ¢�1o.¢/ ! 0 (¢ ! C0),

R.¢; tXyŒt �/ D
[

fx C ¢F .t; x/ j x 2 XyŒt �g; t0 � t � t C ¢ � t1;

and R.¢; t; XyŒt �/ is convex due to Assumption 8.1.1.
Taking the infimal convolution of support functions for respective sets

in the above intersection (under assumptions of Theorem 8.2.1 the inf-
convolution (8.16), (8.17) is exact, [194]), we come to
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®.l; t C ¢/ D (8.18)

D min
q

f¡.q j R.¢; t; XyŒt �// C ¡.l � q j Y .t C ¢// j q 2 rB.0/ C o.¢/; kqk � 1g

for a certain r > 0.
Hence we have to verify only the right-differentiability in ¢ of the following

function

H.¢; l; t/ D min
q

max
x

fh.¢; t; l; q; x/ j q 2 rS; x 2 XyŒt �g; (8.19)

where

h.¢; t; l; q; x/ D .q; x/ C ¢¡.q j F .t; x// C ¡.l � q j Y .t C ¢// (8.20)

with fl; tg fixed.
The differentiation of this minimax relation may be realized using the rules

given in [60, Theorem 5.3]. Applying this theorem, all the conditions of which are
satisfied, we arrive at (8.16).

Let us elaborate on this result. Due to properties of XyŒt � we have XyŒt � 	 Y .t/,
so that (8.17) yields (with q 2 Q.l; t/)

®.l; t/ � ®.q; t/ D ¡.l � q j Y .t// � ®.l � q; t/ (8.21)

On the other hand, since the function ®.l; t/ is convex and positively homogeneous
in l 2 Rn with t fixed, we also observe

®.l; t/ � ®.q; t/ C ®.l � q; t/ (8.22)

Comparing this with (8.21), we come to the equality

®.l; t/ � ®.q; t/ D ®.l � q; t/: (8.23)

Without loss of generality we could have assumed 0 2 XyŒt �.
Suppose we now require

0 2 int XyŒt �; 8t 2 Œt0:t1�; (8.24)

which is an additional assumption. It is not difficult to prove the following sufficient
condition for the sets X Œt � to be symmetric with respect to 0.3

3 Recall that a set A 	 Rn is defined to be symmetric with respect to 0 if A D �A .
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Lemma 8.2.1. Suppose assumption (8.24) holds and sets X 0, grapht F , Y.t/ are
symmetric for all t 2 Œt0; t1�. Then set X Œt � is also symmetric whatever be the instant
t 2 Œt0; t1�.

Under the assumptions of Lemma 8.2.1 the inequality (8.22) turns into an
equality if and only if the vectors l , q are collinear (l D ’q and ’ � 0). Then (8.17)
turns into

.1 � ’/.¡.l j XŒt�/ � ¡.l j Y.t/// D 0

so that with ¡.l j XŒt�/ < ¡.l j Y.t// we have ’ D 1 and in (8.16) the set Q.l; t/ D
flg. Otherwise, q D ’l , ’ 2 Œ0; 1� and

§.q; x; l; t/ D ’¡.l j F .t; x// C .1 � ’/@¡.l j Y.t//=@t;

so that the minimum in (8.16) is to be taken over ’ 2 Œ0; 1�.
Finally, we have

Theorem 8.2.2. Under assumptions of Theorem 8.1.1 the next relations are true:

@C®.l; t/

@t
D
�

¡max; if ®.l; t/ < ¡.l j Y .t//I
min f¡max; @¡.l j Y .t//=@tg ; if ®.l; t/ D ¡.l j Y .t//;

(8.25)

¡max D maxf¡.l j F .t; x// j x 2 @l®.l; t/g:

For a linear system this turns into

@C®.l; t/

@t
D
�

¡�; if ®.l; t/ < ¡.l j Y .t//I
minf¡�; @¡.l j Y .t//=@tg; if ®.l; t/ D ¡.l j Y .t//;

(8.26)

¡� D ¡.A0l j @l®.l; t// C ¡.l j B.t/Q .t//:

Each of the relations (8.25), (8.26) is actually a generalized partial differential
equation which has to be solved under boundary condition

®.l; t0/ D ¡.l j X Œt0�/: (8.27)

The last result will later be used in Sect. 8.4 in describing feedback solution
strategies for the problem of closed-loop control under state constraints.

8.2.2 Viability Through Parameterization

In this subsection the description viable trajectory tubes is reduced to the treatment
of trajectory tubes for a variety of specially designed new differential inclusions
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without state constraints. These new inclusions are designed depending upon certain
parameters and have a relatively simple structure. The overall solution is then
presented as an intersection of parallel solution tubes for the parametrized inclusions
over all the parameters.

The General Case

We start with the general nonlinear case, namely, with differential inclusion (8.1)
and set-valued state constraint (8.4), repeated here as

Px 2 F .t; x/; x.t0/ 2 X 0; t0 � t � t1; (8.28)

with constraints

x.t/ 2 Y .t/; t0 � t � £; (8.29)

supposing also that the basic conditions of Sect. 8.1 on maps F , Y and set X 0 are
satisfied.

In this section we do not require however that either of the Assump-
tions 8.1.1, 8.1.2 or 8.1.3, 8.1.4 would hold.

We further need to introduce the restriction FY .t; x/ of map F .t; x/ to a set
Y .t/ (at time t ). This is given by

FY .t; x/ D
�

F .t; x/; if x 2 Y .t/I
;; if x 62 Y .t/:

The next property follows directly from the definition of viable trajectories.

Lemma 8.2.2. An absolutely continuous function xŒt � defined on the interval Œt0; £�

with x0 2 X 0 is a viable trajectory to (8.28) for t 2 Œt0; £� if and only if the inclusion
PxŒt � 2 FY .t; xŒt �/ is true for almost all t 2 Œt0; £�.

We will now represent FY .t; x/ as an intersection of certain multifunctions. The
first step to achieve that objective will be to prove the following auxiliary assertion.

Lemma 8.2.3. Suppose A is a bounded set, B a convex closed set, both in Rn. Then

\
fA C LB j L 2 Rn�ng D

�
A if 0 2 B;

; if 0 62 B;

Proof. First assume 0 2 B . Then

A 	
\

fA C Lf0g j L 2 Rn�ng 	
\

fA C LB j L 2 Rn�ng 	 A C 0 � B D A:
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Hence, A D TfACLB j L 2 Rn�ng. If 0 62 B , then there exists a hyperplane in Rn

that strictly separates the origin from B . By the boundedness of A, for a sufficiently
large number œ > 0, we then have

.A C œB/ \ .A � œB/ D ;:

Setting LC D œI and L� D �œI we conclude that

\
fA C LB j L 2 Rn�ng 	 .A C LCB/ \ .A C L�B/ D ;:

The lemma is thus proved.

From the above two lemmas above we obtain the following description of viable
trajectories.

Theorem 8.2.3. An absolutely continuous function x.�/ defined on an interval
Œt0; t1� with x0 D x.t0/ is a viable trajectory of (8.28) for Œt0; £� iff the inclusion

Px.t/ 2
\

f.F .t; x/ � Lx.t/ C LY .t// j L 2 Rn�ng

is true for almost all t 2 Œt0; £�.

We introduce a family of differential inclusions that depend on a matrix
parameter L 2 Rn�n. These are given by

Pz 2 F .t; z/ � Lz C LY .t/; z.t0/ 2 X 0; t0 � t � t1: (8.30)

By zŒ�� D z.�; £; t0; z0; L/ denote the trajectory to (8.30) defined on the interval
Œt0; £� with zŒt0� D z0 2 X 0. Also denote

Z.�; £; t0; X 0; L/ D
[

fZ.�; £; t0; z0; L/ j z0 2 X 0g;

where Z.�; £; t0; z0; L/ is the tube of all trajectories zŒ�� D z.�; £; t0; z0; L/ issued at
time t0 from point z0 and defined on Œt0; £�. The cross-sections of set Z.�; £; t0; X 0; L/

at time t are then denoted as Z.£; t0; X 0; L/.

Theorem 8.2.4. For each £ 2 Œt0; t1� one has

Xy.�; £; t0; X 0/ D
\

fZ.�; £; t0; X 0; L/ j L 2 Rn�ng:

Moreover, the following inclusion is true

XyŒ£� D Xy.£; t0; X 0/ 	
\

fZ.£; t0; X 0; L/ j L 2 Rn�ng:
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The Linear-Convex Case

For the case of linear system (8.10)

Px 2 A.t/x C B.t/Q .t/; x.t0/ D x0 2 X 0; t0 � t � t1;

inclusion (8.30) turns into

Pz 2 .A.t/�L.t//zCQ .t/CL.t/Y .t/; z.t0/ D z0 2 X 0; t0 � t � £: (8.31)

whose solution tubes parametrized by L.�/ are Z.£; t0; X 0; L.�// However, the main
point for a linear system is that the second inclusion of Theorem 8.2.4 actually turns
into an equality, producing the next result.

Theorem 8.2.5. The following equality is true for any £ 2 Œt0; t1�:

XyŒ£� D
\

fZ.£; t0; X 0; L.�// j L.�/ 2 Rn�nŒt0; £�g: (8.32)

The proof of this theorem is a rather cumbersome procedure which relies on
direct calculations of Sects. 8.1 and 8.2, including the modified maximum principle
of Sect. 7.2.1, is given in detail in [158] (see Sects. 10–13 of that paper).

Remark 8.2.1. Dealing with nonlinear systems we could look at a broader class of
functions that parametrize (8.30), taking L D L.�; �/ D fL.t; x/ t 2 Œt0; t1�; x 2
Rng: Question: does there then exist a class of nonlinearities and a related class of
functions L.t; x/ that would ensure an equality similar to (8.32)?

8.3 Control Synthesis Under State Constraints:
Viable Solutions

The techniques of Chaps. 2 and 3 with those of Sects. 7.1 and 7.2 allow to approach
the problem of control synthesis under state constraints (see [136]). Such issues
were treated later under the term “viability problems,” with some renaming of earlier
terminology [5]. Therefore we may also interpret our problem as that of terminal
control “under viability constraints,” meaning that solutions subject to the state
constraint are “viable solutions.” As in the case of systems without state constraints,
the synthesized solution strategy described here will be nonlinear.
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8.3.1 The Problem of State-Constrained Closed-Loop Control:
Backward Reachability Under Viability Constraints

We now return to system (7.30), namely,

Px D f .t; x; u/ D A.t/x C B.t/u; u 2 P .t/ D E.p.t/; P.t// (8.33)

x 2 Y .t/ D E.y.t/; Y.t// (8.34)

x0 D x.t0/ 2 X 0; (8.35)

where p.t/, P.t/ are continuous and y.t/, Y.t/ are absolutely continuous. The target
set is also ellipsoidal: M D E.m; M/

We may present constraints (8.34) and x 2 E.m; M/ as

®.t; x/ D hx � y.t/; Y �1.t/.x � y.t//i � 1; ®M .x/ D hx � m; M �1.x � m/i � 1:

The following problems are considered.

Problem 8.3.1. Given interval Œ£; t1�, system position f£; xg and convex compact
target set M � Rn, find

(i) solvability set W Œ£� D W .£; t1; M / and
(ii) feedback control strategy u D U.t; x/, U.�; �/ 2 UY such that all the solutions

to the differential inclusion

Px 2 A.t/x C B.t/U.t; x/ (8.36)

that start from a given position f£; xg, x D xŒ£�, xŒ£� 2 W .£; t1; M /, £ 2
Œt0; t1�, would satisfy the inclusion (8.34), £ � t � t1, with x.t1/ 2 M .

Here UY is an appropriate class of functions defined below, in (8.42). The given
problem is non-redundant, provided W Œ£� D W.£; t1; M / ¤ ;.

The value function for Problem 8.3.1 may be defined as follows

V s.£; x/ D min
u

max

�
max

t
f®.t; xŒt �/ j t 2 Œ£; t1�g; ®M .xŒt1�/

ˇ̌
ˇ̌ xŒ£� D x

�
:

(8.37)
Then

W Œ£� D fx W V s.£; x/ � 1g

will be the backward reach set relative to M under state constraint Y .t/, which
is the set of points x for which there exists some control u.t/ that steers trajectory
xŒt � D x.t; £; x/ to M with x.t/ 2 Y .t/; t 2 Œ£; t1�.
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Denote V s.t; x/ D V s.t; x j V s.t1; �//, emphasizing the dependence of V s.t; x/

on the boundary condition V s.t1; x/ D maxf®.ª; x/; ®M .x/g.

Lemma 8.3.1. The value function V s.t; x/ satisfies the principle of optimality,
which has the semigroup form

V s.£; x j V s.t1; �// D V s.£; x j V s.t; � j V s.t1; �///: (8.38)

As in Sect. 2.1 this property is established through conventional reasoning and
implies a similar property for the corresponding reachability sets. Namely, if we
take W Œ£� D W .£; t1; M /, we have W .£; t1; M / D W .£; t; W .t; t1; M //:

To proceed further, denote

H .t; x; p; u/ D p0 C hp; f .t; x; u/i; p D fp0; pg:

Consider the .n C 1/-dimensional vector p D fV s
t ; V s

x g: Then, under control u
the total derivative of V s.t; x/ along a trajectory x.t/ of (8.33) will be

dV s=dt ju D H .t; x; p; u/; p0 D V s
t ; p D V s

x :

This relation is true for linear systems of type (8.33), with a differentiable V s.t; x/.
Otherwise, the property of differentiability for V s may be relaxed to directional
differentiability which in our case always holds.

The class of solution strategies. As in Chap. 2, we shall look for the solution in the
class UY of all set-valued functions with convex compact values that are measurable
in t and upper semicontinuous in x, ensuring thus the solvability and extendability
of solutions to (8.36) for any x0 2 X 0 2 convRn. But the difference will be in that
now UY of Problem 8.3.1 will be

UY D fU.t; x/g; U.t; x/ D

8̂
ˆ̂̂<
ˆ̂̂̂
:

Pw.t/ D E.p.t/; P.t// \ fu W d®.t; x/=dt ju � 0g;
if ®.t; x/ D 1;

Pw.t/ D E.p.t/; P.t//;

if ®.t; x/ < 1:

(8.39)
Assume

V s.t; x/ > ®.t; x/:

Then the HJB equation for V s will be

V s
t .t; x/ C min

u
hV s

x ; A.t/x C B.t/ui D 0; u 2 Pw.t/; (8.40)

under boundary condition V s.t1; x/ D maxf®.t1; x/; ®M .x/g:
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Note that under control u the total derivative along the trajectory of (8.33) is

dV s=dt ju D H .t; x; p; u/; p D fV s
t ; V s

x g;

and d®.t; x/=dt ju D H .t; x; ®t;x; u/:

Lemma 8.3.2. The backward reachability set, at time £ � t1; from target set M ;

under state constraint x.t/ 2 Y is the level set

W .£; t1; M / D W Œ£� D fx W V s.£; x/ � 1g:

The proof of this assertion is similar to the reasoning of Sect. 7.1.2

Exercise 8.3.1. Prove Lemma 8.3.2.

Now consider the second part (ii) of Problem 8.3.1 on closed-loop control
synthesis. Without loss of generality we shall assume A.t/ � 0, then indicate
formal changes for A.t/ 6� 0: In order to do that we will need to know set W Œ£�

and may therefore use the description given above, repeating ellipsoidal techniques
of Sect. 7.1.2. This route relies on reaching the solutions through single-valued
functions, as thoroughly discussed in Sects. 7.1 and 7.2.

However we shall now rely on the alternative vision of the same problem which
involves set-valued representations.

8.3.2 State-Constrained Closed-Loop Control

We thus deal with system

Px D B.t/u; (8.41)

u 2 P .t/ D E.p.t/; P.t//; x 2 Y .t/ D E.y.t/; Y.t//; x£ D x.£/ 2 X£ D E.x�
£ ; X£/

(8.42)

Following the scheme of Sect. 2.6 we will look for the closed-loop solution
strategy U� by using solvability (or backward reach) sets introduced in Chap. 2,
Sects. 2.3 and 2.6.

We recall that apart from Lemma 8.3.2, the backward reach set W Œ£� D
W.£; t1; M / is also given by a funnel equation, similar to equations derived for
forward reach in Sect. 8.1 (see (8.8) for the general case and (8.11) for the linear
case):

Lemma 8.3.3. The set-valued function W Œt � satisfies the following evolution
equation

lim
¢!0

¢�1h

W Œt � ¢�; .W Œt � � ¢B.t/P .t// \ Y .t � ¢/

� D 0; (8.43)

t0 � t � t1; W Œt1� D M :
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The tube W Œt � will now be used to introduce a scheme for finding the
synthesizing control strategy U.t; x/.

Given W Œt �, t 2 Œ£; t1�, let

dhC.x.t/; W Œt �/=dt
ˇ̌
.8:41/

(8.44)

denote the total derivative at time t C 0 of the distance d.x; W Œt �/ D hC.x; W Œt �/

due to Eq. (8.41).
Define

U�.t; x/ D
n
u
ˇ̌
ˇ dhC.x; W Œt �/=dt

ˇ̌
.8:41/

� 0
o

:

We now have to prove that the set-valued strategy U�.t; x/ ¤ ; for all ft; xg and
that it solves the problem of control synthesis.

Calculating hC.x; W Œt �/, we have

hC.x; W Œt �/ D maxfhl; xi � ¡.l j W Œt �/ j klk � 1g;

so that the maximizer l0 D l0.t; x/ ¤ 0 yields

hC.x; W Œt �/ D hl0; xi � ¡.l0 j W Œt �/

if hC.x; W Œt �/ > 0 (otherwise l0 D 0 and hC.x; W Œt �/ D 0).
To calculate the derivative (8.41) we need to know the partial derivative of

¡.l j W Œt �/ at time t C 0, which is

@

@.t C 0/
¡.l0 j W Œt �/ D � @

@.s � 0/
¡.l0 j W Œ�s�/; s D �t:

Here the right-hand part can be calculated similarly to [158, Sect. 9], as done for
@¡.l j X Œt �/=@.t C 0/, but now in backward time.

Since W Œt � 	 Y .t/, this gives

@¡.l0 j W Œt �/

@.t � 0/

D

8̂
<
:̂

¡.�l0 j B.t/P .t//; if ¡.l0 j W Œt � / < ¡.l0 j Y .t//;

minf¡.�l0 j B.t/P .t//; �@=@t .¡.l0 j Y .t///g; if ¡.l0 j W Œt � / D ¡.l0 j Y .t//:

(8.45)

Exercise 8.3.2. Check the formula of (8.45).

The last relation indicates that

U0.t; x/ D fu W h�l0; B.t/ui D ¡.�l0 j B.t/P .t//g ¤ ;;

and therefore U�.t; x/ ¤ ;, since U0.t; x/ 	 U�.t; x/. Thus we come to
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Lemma 8.3.4. The strategy U�.�; �/ 2 UY .

The necessary properties that ensure U�.�; �/ 2 UY may be checked directly.
A standard type of reasoning yields the following

Theorem 8.3.1. The strategy u D U�.t; x/ solves the Problem 8.3.1 of target
control synthesis under “viability” constraint Y .t/ for any position ft; xg that
satisfies the inclusion x 2 W Œt �.

This theorem follows from

Lemma 8.3.5. For any solution xŒt � D x.t; £; x£/ to the inclusion

Px 2 B.t/U�.t; x/; xŒ£� D x£ 2 W Œ£�; £ � t � t1; (8.46)

one has xŒt � 2 W Œt �, £ � t � t1, and therefore xŒt � 2 Y .t/, £ � t � t1, xŒt1� 2 M .

Indeed, if we suppose xŒ£� 2 W Œ£� and hC.xŒt��; W Œt �/ > 0 for some t�>£,
then there exists a point t�� 2 .£; t�� where dhC.xŒt���; W Œt���/=dt > 0 in
contradiction with the definition of U�.t; x/.

The theory of trajectory tubes and the results presented particularly in this section
allow to give a further description of the synthesized solution to (8.36) under
U.t; x/ � U�.t; x/. Namely, it is now necessary to describe the tube of all solutions
to (8.36) that start with xŒ£� 2 X£. The main point is that this tube may be described
without knowledge of the strategy U�.t; x/ itself, but only on the basis of the
information given just for the original Problem 8.3.1. This is due to the property
of colliding tubes, described in Sect. 2.6, which is also true under state constraints.

Exercise 8.3.3. Prove Corollary 2.5.1 under state constraint x.t/ 2 Y .t/; t 2
Œt0; t1�.

Together with (8.43) consider the following evolution equation

lim
¢!0

¢�1h.�.t C ¢/; .�.t/ C ¢P .t// \ W .t C ¢// D 0; (8.47)

�.£/ D X£; X£ 2 convRn; X£ 	 Y .£/; £ � t � t1:

Assumption 8.3.1. (i) The support function f .t; l/ D ¡.l j Y .t// is differentiable
in t for each l and the derivative @f .t; l/=@t is continuous.

(ii) The set graph Y .�/ D ft; x W x 2 Y .t/; t 2 Œt0; t1�g is convex and compact.

Suppose one of the conditions (i), (ii) of Assumption 8.3.1 holds. Then it is
possible to prove the following assertions (see [158], Sects. 6–8).

Theorem 8.3.2. The solution tube �Œt � D �.t; £; X£/ to the synthesized sys-
tem (8.46), X Œ£� D X£ under the viability constraint (8.34) is the tube of all solutions
to the evolution equation (8.47).
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Corollary 8.3.1. The tube of all synthesized trajectories from a given point
x£ 2 W Œ£� may be defined as the tube of all solutions to the differential inclusion

Px 2 B.t/P .t/; x.£/ D x£; t 2 Œ£; t1� (8.48)

that satisfy x.t/ 2 W .t/, £ � t � t1, and are therefore viable relative to W .t/,
where W Œt � is the solution to (8.43).

The synthesized trajectory tube is therefore a set-valued solution to the “two-set
boundary value problem” (8.43), (8.47) due to the respective evolution equations.
The calculation of this solution obviously does not require the knowledge of the
strategy u D U�.t; x/ itself.

Remark 8.3.1. Observe that set W Œ£� is weakly invariant relative to M ; Y .�/ due
to differential inclusion (8.48) and strongly invariant relative to M ; Y .�/ due to
differential inclusion (8.46).

Exercise 8.3.4. A theorem of 8.3.2 type was proved for a nonlinear differential
inclusion [158] under conditions different from Assumption 8.3.1. Prove this
theorem under Assumption 8.3.1 of this section which imply original equation (8.33)
to be linear.

Note that with A.t/ 6D 0 the funnel equation for W Œt� is as follows

lim
¢!0

¢�1h

W Œt � ¢�; ..I � ¢A.t//W Œt � � .B.t/P .t//¢/ \ Y .t � ¢/

� D 0;

(8.49)
t0 � t � t1; W Œt1� D M :

Exercise 8.3.5. Prove the results of this section for A.t/ 6D 0, using (8.34) and the
results of Sect. 2.6.

Exercise 8.3.6. Calculate W Œ£� using the techniques of convex analysis, similar to
Sect. 2.4.

8.3.3 Example

Consider the double integrator system of Sect. 7.2.4, taken on the time interval t 2
Œ0; 2�; namely,

Px1 D x2; Px2 D u; (8.50)

with control juj � k. Let m D .m1; 0/, ®M .x/ D hx�m; M.x�m/i; M D M 0 > 0

and ®.x2/ D jx2j2.
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Fig. 8.1 Growth of the
backward reach set subject to
convex constraints for a
double integrator (solid lines;
final time is shown thicker).
The target set (dotted line)
and constraints (shaded
region) are shown as well.
The unconstrained backward
reach set at the same final
time is shown for comparison
(dashed line)
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The objective is to calculate at time £ 2 Œ0; 2/ the backward reach set W Œ£� D
W .£; 2; M / from target set M D fx W hx � m; M.x � m/i1=2 � 1g under state
constraint jx2Œt �j � 1; t 2 Œ£; 2�.

Such calculations may be done using schemes of Sect. 7.2.4 or following funnel
equation (8.43).

Based on such a scheme Fig. 8.1 shows a particular version of this example
worked out by Ian Mitchell, with solution approximated numerically, using level
set methods of [221, 244]. The chosen parameters are

k D 1; m D .0; 0:8/0; M D
�

12 �4

�4 12

�
:

This figure shows final reach set at t1 D 2; without constraint (dashed line) and
with convex constraints jx2.t/j � 1 (thick solid line). The constrained reach set is
much smaller than the intersection of the state constraints and the unconstrained
reach set.

To present system (8.50) in the form of (8.41), we apply transformation z.t/ D
G.0; t/x.t/

G.0; t/ D
�

1 �t

0 1

�
;
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keeping for variable z the original notation x. We then come to equations

� Px1 D �tu
Px2 D u

;

or

Px D b.t/u; b0.t/ D .�t; 1/

which is of the form (8.41). Hence the related funnel equation (8.43) will be

lim
¢!0

¢�1h

W Œt � ¢�; .W Œt � � ¢B.t/P .t// \ Y .t � ¢/

� D 0; (8.51)

t0 � t � t1; W Œt1� D M :

Here the state constraint Y is a stripe which may be approximated internally by an
ellipsoid E.0; Y–/, where ¡.l j E.0; Y–/ D .©�2l2

1 C l2
2 /1=2.

Exercise 8.3.7. Present W Œ£� as an intersection of several ellipsoids.

Exercise 8.3.8. (a) Indicate the control that connects a given point on the
boundary of W Œ£� with a point given on the boundary of M at time t1:

(b) Solve similar problem when both points need not be on the related boundaries.

8.4 Obstacle Problems

8.4.1 Complementary Convex State Constraints:
The Obstacle Problem

Consider function §.t; x/ D hx � z; Z�1.t/.z � x/i with Z.t/ D fx W §.t; x/ � 1g.
Then inclusion x.t/ 2 Z.t/ will be referred to as the complementary convex state
constraint. The next problem has such type of state constraint.

Problem 8.4.1. Given time interval Œ£; t1�, and functions §.t; x/; ®M .x/, find set

WcŒ£� D
�

x W 9u.�/; 8t 2 Œ£; ª� §.t; xŒt �/ � 1; ®M .xŒª�/ � 1I xŒ£� D x

�
:

WcŒ£� D fx W V c.£; x/ � 1g is the level set for the value function

V c.£; x/ D min
u

max

�
max

t
f�§.t; xŒt �/ C 2 j t 2 Œ£; t1�g; ®M .xŒt1�/

ˇ̌
ˇ̌ xŒ£� D x

�
:
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This is the set of points x from which some controlled trajectory xŒt � D x.t; £; x£/,
starting at time £, reaches M at time t D t1 under state constraint §.t; xŒt �/ � 1 or,
equivalently, xŒt � 2 Z.t/; 8t 2 Œ£; ª�.

Note that Problem 8.4.1 requires x.t/ to stay outside the interior of convex
compact set Z.t/. So function V c.t; x/ and sets W Œt � in general lack the property
of convexity.

The value function V c.t; x/ also satisfies a semigroup property similar to (8.43).
This gives, for any u.s/ 2 E.p.s/; P.s//; s 2 Œt; t C ¢�; ¢ � 0; the inequality

max

�
max

s
f�§.s; xŒs�/ C 2 j s 2 Œt; t C ¢�g � V c.t; x/;

V c.t C ¢; xŒt C ¢�/ � V c.t; x/

ˇ̌
ˇ̌ xŒt � D x

�
� 0;

with equality reached along the optimal trajectory, and

�§.t; x/ C 2 � V c.t; x/:

We assume that V c.t; x/ and §.t; x/ are differentiable.

Case (a) . Assuming

�§.t; x/ C 2 < V c.t; x/;

we have

V c
t .t; x/ C min

u
hV c

x ; f .t; x; u//i D 0; u 2 E.p.t/; P.t//: (8.52)

Case (b). Assuming

�§.t; x/ C 2 D V c.t; x/;

with u0.t/; x0.t/ being the optimal solution to Problem 8.4.1, we have, through
reasoning similar to the above

maxfH .t; xŒt �; V c
tx.t; xŒt �/; u/; H .t; xŒt �; �§tx.t; xŒt �/; u/ � 0;

0 D H .t; x0Œt �; V c
tx.t; x0Œt �; u0/ � H .t; x0Œt �; �§tx.t; x0Œt �/; u0/: (8.53)

The boundary condition is

V c.t1; x/ D maxf�§.t1; x/ C 2; ®M .x/g: (8.54)
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Theorem 8.4.1. The solution to Problem 8.4.1 is given by

WcŒ£� D fx W V c.£; x/ � 1g;

in which V c.£; x/ is the solution to (8.52), (8.54).

8.4.2 The Obstacle Problem and the Reach-Evasion Set

The next obstacle problem combines the previous two state constraints, namely
those of Problems 8.3.1 and 8.4.1. We thus have

Problem 8.4.2. Given time interval Œ£; t1� and functions ®.t; x/; §.t; x/; ®M .x/,
find the set

WoŒ£� D
�

x 2 Rn W 9u.�/; 8t 2 Œ£; t1�; ®.t; xŒt �/ � 1;

§.t; xŒt �/ � 1; ®M .xŒt1�/ � 1I xŒ£� D x

�
:

Hence WoŒ£� D fx W V o.£; x/ � 1g is the level set of the value function

V o.£; x/ D min
u

max
n
max

t
fmaxf®.t; xŒt �/; �§.t; xŒt �/ C 2g j t 2 Œ£; t1�g ;

®M .xŒt1�/

ˇ̌
ˇ̌ xŒ£� D x

�
:

This is the set of points x from which some controlled trajectory xŒt � D x.t; £; x/,
starting at time £, reaches M at time t D t1 and also satisfies the state constraints
xŒt � 2 Y .t/; xŒt � 2 Z.t/; 8t 2 Œ£; t1�.

Set W Œ£� is known as the reach-evasion set [203, 204].
Finally, in Problem 8.4.2, the value function V o.t; x/ satisfies an analog of

Lemma 8.3.1. We have, for any u.s/ 2 P .s/; s 2 Œt; t C ¢�, ¢ � 0, the relations

max

�
max

s
fmaxf®.s; xŒs�/; �§.s; xŒs�/ C 2g j s 2 Œt; t C ¢�g � V o.t; x/;

V o.t C ¢; xŒt C ¢�/ � V o.t; x/ j xŒt � D x

�
� 0; (8.55)

with equality along the optimal trajectory, and

®.t; x/ � V o.t; x/; �§.t; x/ C 2 � V o.t; x/:
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Case (a-o). Assuming V o.t; x/ > ®.t; x/; V o.t; x/ > �§.t; x/ C 2; we have
the HJB equation

V o
t .t; x/ C min

u
hV o

x ; f .t; x; u/i D 0; u 2 P .t/I (8.56)

Case (b-o). Assuming V o.t; x/ D ®.t; x/, but V 0.t; x/ > �§.t; x/ C 2; we have

maxfH .t; x; V o
tx; u/; H .t; x; ®tx; u/g � 0;

0 D H .t; x.0/Œt �; V o
tx.t; x.0/Œt �/; u0/ � H .t; x.0/Œt �; ®tx.t; x.0/Œt �/; u0/ (8.57)

and lastly,
Case (c-o). Assuming V o.t; x/ D �§.t; x/ C 2; but V 0.t; x/ > ®.t; x/; we have

maxfH .t; x; V o
tx; u/; H .t; x; �§tx; u/g � 0;

0 D H .t; x; V o
tx; u0/ � H .t; x; §tx; u0/: (8.58)

The boundary condition is

V o.t1; x/ D maxf®.t1; x/; �§.t1; x/ C 2; ®M .x/g (8.59)

Theorem 8.4.2. The solution to Problem 8.4.1 is given by

WoŒ£� D fx W V o.£; x/ � 1g;

in which V o.£; x/ is the solution to (8.56)–(8.59).

Here we have presumed Z.t/ \ Y .t/ 6D ;; 8 t 2 Œ£; t1�.

8.4.3 Obstacle Problem: An Example

Here we consider an illustrative example for the obstacle problem worked out by I.
Mitchell. We introduce a complementary convex constraint of Problem 8.4.1, then
add a convex constraint coming to Problem 8.4.2. On a finite interval t 2 Œ0; t1� we
consider system

Px1 D u1; Px2 D u2; (8.60)

with controls jui j � k; i D 1; 2; k � 1:

Now let m D .0; m2/ be a terminal point, with m2 > 1 and ®M .x/ D hx � m;

x � mi; ®.x/ D x2; §.x/ D .x2
1 C x2

2/. Our objective is to calculate at time
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£ 2 Œ0; ª/ the backward reach set W Œ£� D W .£; t1; M / from the terminal set
M D fx W hx � m; x � mi1=2 � 1g under state constraints ®.x/ � 2; §.xŒt �/ �
1; t 2 Œ£; t1�.

For our system (8.60) we can calculate the related value function V o.t; x/ as

V.£; x/ D min
u

max
n
max

t
fmaxf®.xŒt �/ � 1;

�®2.xŒt �/ C 2g j t 2 Œ£; t1�g; ®M .t1/
ˇ̌

xŒ£� D x
�

: (8.61)

We then have WoŒ£� D fx W V o.£; x/ � 1g.
A calculation of this function through methods of convex analysis is given in

detail in [161].
The calculations through a level set algorithm, due to Mitchell, are indicated in

Fig. 8.2.
This figure shows a particular version of this example approximated numerically

in the same manner as for Fig. 8.1. The parameters are

k D 1; m D .0; 1:3/0:
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Fig. 8.2 Growth of reach W Œt � set subject to convex and nonconvex constraints (solid lines; final
time is shown thicker). The target set (dotted circle) and constraints (shaded regions) are shown as
well. The unconstrained reach set at the same final time is shown for comparison (dashed line)
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The figure shows the final reach set at t1 D 1 with no constraint (dashed line)
and subject to the combination of convex constraint jx2Œt �j � 2 and nonconvex

constraint
q

x2
1 C x2

2 � 1 (thick solid line).

8.4.4 Closed-Loop Control for the Obstacle Problem

Once the backward reachability sets WoŒt � are described, one may proceed to the
solution of the control synthesis problem, to obtain the closed-loop control.

Problem 8.4.3. Given set WoŒ£�; find control strategy ue.t; x/.Ue.t; x// that steers
system (8.33) from any position f£; xg; x 2 Wo.t/ to a position ft1; x.t1/g under
following additional constraints:

(i=1) ®.t; x.t// � 1; t 2 Œ£; t1�I ®M .x.t1/ � 1;
(i=2) §.t; x.t// � 1; t 2 Œ£; t1�I ®M .x.t1// � 1;
(i=3) ®.t; x.t// � 1; §.t; x.t// � 1; t 2 Œ£; ª�I ®M .x.ª// � 1.

Each of the strategies ue.t; x/.Ue.t; x// may be sought for directly, from the
respective HJB-type equations or inequalities given above for calculating Vo.t; x/.
However we will apply the generalized “aiming” scheme, used in Sect. 8.1.2 and
introduced earlier, for systems without state constraints, in Sect. 2.6 (see [123,247]).

Namely, considering function Vo.t; x/ D d 2.x; Wo.t//, introduce either single-
valued strategies

ue.t; x/ 2 Ue.t; x/ D

arg minfexp.�2œt/h.Vo/x.t; x/; f .t; x; u/i j u 2 P .t/g; (8.62)

œ > 0, or the set-valued strategies

Ue.t; x/ D Ue.t; x/;

depending on the type of system and the definition of solutions used. Here œ is the
Lipschitz constant in ft; xg for function f .

Theorem 8.4.3. The closed-loop strategy Ue.t; x/ for Obstacle Problem 8.4.2 is
given by (8.62).

The problem is that the proposed strategy ue.t; x/ or Ue.t; x/ must satisfy in
some appropriate sense the equation

Px D f .t; x; ue.t; x//; (8.63)
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or the differential inclusion

Px 2 f .t; x; Ue.t; x//: (8.64)

For a general nonlinear system of type (8.63) the solution may be defined as
a “constructive motion” introduced in [123], while in the case of linear systems
with convex compact constraints on the controls the solutions Ue.t; x/ may be
taken in the class of upper semi-continuous set-valued strategies with synthesized
system (8.64) treated as a differential inclusion [121, 123, 174].



Chapter 9
Guaranteed State Estimation

Abstract This chapter deals with the problem of set-membership or “guaranteed”
state estimation. The problem is to estimate the state of a dynamic process from
partial observations corrupted by unknown but bounded noise in the system and
measurement inputs (in contrast with stochastic noise). The problem is treated in
both continuous and discrete time. Comparison with stochastic filtering is also
discussed.

Keywords State estimation • Bounding approach • Information states • Informa-
tion tubes • Hamiltonian techniques • Ellipsoidal approximations

The problem of model and system state estimation through incomplete observa-
tions under non-probabilistic noise (the “theory of guaranteed estimation”) was
introduced and developed in [25, 45, 119, 135–137, 210, 241, 271]. Various versions
of the problem had been worked out using different tools and serving numerous
applications. The specifics of this problem are that the system operates under
unknown but bounded input disturbances while the available observations, corrupted
by similar set-membership noise, satisfy the measurement equation which yields an
on-line state constraint (in contrast with such constraints given in advance). Hence
the problem to be considered is actually one of finding the reachability set for a
system subjected to state constraints which arrive on-line.

The solution to the state estimation problem (an “observer”) is set-valued, with
output given by “information sets” of states consistent with the system dynamics
and the available measurements. The calculation of such sets—the observer outputs,
which evolve in time as an “information tube,” pose a challenging computational
problem, especially in the nonlinear case.

In this chapter we proceed with a further application of Hamiltonian techniques
indicated previously in Chap. 2 for systems without state constraints and in Chap. 7
for those with state constraints given in advance. This gives the solution to the
guaranteed (set-membership) state estimation problem by describing information
tubes using HJB equations. The idea applied here is that these information sets may
be expressed as level sets of related value functions, called “information states”,
which are the solutions to special types of the HJB equation. Such a turn yields

© Springer International Publishing Switzerland 2014
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a deeper insight into the investigated problem and opens new routes for designing
computational algorithms. It applies to both linear and nonlinear systems.

Since calculating solutions to HJB equations is not simple, we proceed, as in
Sect. 7.1, with substituting the original HJB equations by variational inequalities
due to a related comparison principle. As in Sects. 5.1 and 7.1, the comparison
theorems generated now by the guaranteed state estimation (filtering) problem are
applicable to both smooth and non-smooth solutions to related HJB equations. It is
also shown that in case of linear systems with convex constraints on the disturbances
this approach may lead to effective external and internal approximations of the
information sets and tubes using ellipsoidal techniques.

Further on, a later detour is to discrete-time systems introducing the reader to a
collection of formulas useful for computation. This is followed by interrelations
between guaranteed state estimation theory of this book, as taken for linear
systems, and the well-known stochastic approaches to state estimation based on
the Kalman filtering theory. Finally mentioned is the important issue of dealing
with discontinuous measurements which extend previous results of this chapter to a
broader array of applied problems.

9.1 Set-Membership State Estimation: The Problem.
The Information Tube

Consider the n-dimensional system

Px D f .t; x; v/ (9.1)

where function f .t; x; v/ is similar to (1.1), namely, continuous in all variables
and ensuring standard conditions of uniqueness and extendibility of solutions
throughout a finite interval Œt0; ª� for any initial condition x0 D x.t0/ 2 Rn, and also
for any admissible disturbances v.t/, restricted by geometrical constraints (“hard
bounds”), so that

v.t/ 2 Q .t/; t 2 Œt0; ª�; and x.t0/ 2 X 0: (9.2)

Here Q .t/ is a multivalued function with values in the set compRq of all compacts
of space Rq , continuous in the Hausdorff metric, and set X 0 is compact. The pair
ft0; X0g is the “initial position” of system (9.1).

We also assume that set F .t; x/ D f .t; x; Q .t// is convex and compact. Then,
due to the indicated properties, the set-valued function F .t; x/ will be Hausdorff-
continuous in all the variables.

The on-line information on vector x is given through observations which arrive
through one of the two following schemes.
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Scheme I. State x is measured via continuous observations

y.t/ D g.t; x/ C Ÿ.t/; t 2 Œt0; ª�; (9.3)

where y.t/ 2 Rr is the measurement and Ÿ.t/—the unknown but bounded
disturbance (“noise”), which is restricted to the inclusion

Ÿ.t/ 2 R .t/; t 2 Œt0; ª�; (9.4)

while the properties of set R .t/ are similar to Q .t/. Function g.t; x/ is taken to
be continuous over both variables.
Scheme II. State x is measured via discrete observations

y.£i / D g.£i ; x.£i // C Ÿ.£i /; (9.5)

where y.£i / 2 Rr ; x.£i / 2 Rn, £i < £iC1, £i 2 Œt0; ª�, and noise Ÿ.£i / is
unknown but bounded, restricted by (9.4). The measurement times £i are taken
to be given.

Remark 9.1.1. An interesting situation is the case of communication-type con-
straints where the measurement signals y.£i / are assumed to arrive at random time
instants £i distributed, (say) as a Poisson process, with frequency œ > 0. Such case
lies beyond the scope of this book and is treated in [56].

Taking Scheme I, we assume that given are: the initial position ft0; X 0g, functions
f .t; x; v/; g.t; x/; set-valued functions Q .t/; R .t/, and available on-line measure-
ments y£.¢/ D y.£ C ¢/ (¢ 2 Œt0 � £; 0�).

Definition 9.1.1. The information set X .£; y£; �/ D X Œ£� of system (9.1)–(9.4) is
the collection of all its states xŒ£� D x.£; t0; x.t0//; x.t0/ 2 X 0, consistent with its
parameters and with observed measurements y£.¢/. �

Thus, the actual on-line position of the system may be taken as the pair f£; X Œ£�g.

Problem 9.1.1. Calculate sets X Œt �; t 2 Œt0; ª�; and derive an equation for their
evolution in time.

The set-valued function X Œt � is called the information tube. Such tubes are estimates
of the system dynamics due to on-line measurements. They will be calculated
through two approaches—Hamiltonian techniques and set-valued calculus.

A similar definition and a problem are introduced within Scheme II under
available on-line measurements yŒt0; £� D fy.£i / W £i 2 Œt0; £�g. Then one may
define a similar information set Xd .£; yŒt0; £�/ D Xd Œ£�. The information tube Xd Œt �

may turn out to be discontinuous. This depends on the properties of the function
y.t/. Under Scheme I the discontinuities may be caused by discontinuous noise
while under Scheme II they arrive naturally, since measurements y.£i / are made at
isolated times.

Concentrating on Scheme I, note that the information set X Œ£� is a guaranteed
estimate of the unknown actual state x.£/ of system (9.1), so we always have
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x.£/ 2 X Œ£�; whatever be the unknown noise. Given starting position ft0; X 0g and
measurement y.t/; t 2 Œt0; £�, it makes sense to construct for system (9.1), (9.2) a
forward reachability tube X Œt � D X .t I t0; X 0/; t � t0; which consists of all those
solutions to the differential inclusion Px 2 F .t; x/ that emanate from the set-valued
initial position ft0; X 0g and develop in time under the on-line state constraint

g.t; x/ 2 yŒt � � R .t/; t � t0; (9.6)

generated by the available measurement y.t/ D yŒt �. Then function X Œt � is precisely
the information tube that solves Problem 9.1.1 of guaranteed filtering.

We now proceed with solving the announced problem.

9.2 Hamiltonian Techniques for Set-Membership
State Estimation

Problem 9.1.1 indicated above is not the one of optimization. But as before we
shall solve it through alternative formulations of dynamic optimization. Following
Sect. 7.1.1 these are given in two versions.

9.2.1 Calculating Information Tubes: The HJB Equation

Version A

Problem 9.2.1. Given system (9.1)–(9.3), with available measurement y.s/ D
yŒs�; s 2 Œt0; t �; and set-valued starting position ft0; X 0g; find function

V.t; x/ D min
v

fd 2.x.t0/; X 0/ C
Z t

t0

d 2.yŒs� � g.s; x.s//; R .s//ds j x.t/ D xg
(9.7)

over the trajectories of system (9.1), under constraints (9.2).

The information set X Œ£� D X .£; �/ may then be expressed as the level set

X Œ£� D fx W V.£; x/ � 0g: (9.8)

Here V.t; x/ is the value function related to Problem 9.2.1. This function V.t; x/

is henceforward referred to as the information state of system (9.1)–(9.3). Its level
set or “cross-section” X Œ£� at level 0, namely (9.8), is the reachability set for (9.1)
under on-line state constraints (9.3), given y.t/. Relation

V.t0; x/ D d 2.x; X 0/ (9.9)
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defines the boundary condition for V.t; x/. And as in Theorem 7.1.1 we have the
“semigroup” property

V.t; xj V.t0; �// D V.t; xjV.£; �jV.t0; �///; t0 � £ � t;

which implies the HJB type equation

Vt C maxfhVx; f .t; x; v/i j v 2 Q .t/g � d 2.y.t/ � g.t; x/; R .t// D 0; (9.10)

with boundary condition (9.9). Note that the term d 2.y.t/�g.t; x/; R .t// 6D 0 only
if y.t/ � g.t; x/ is outside of the constraint R .t/.

Here again V.t; x/ is assumed to be differentiable and if not, then (9.10) is
a formal symbolic notation for an equation whose solution should be considered
in a generalized “viscosity” sense (see [16, 17, 50, 80]) or equivalent “minimax”
sense (see [247]). For linear systems with convex value functions V.t; x/ the total
derivative dV=dt D Vt C hVx; f .t; x; v/i may be substituted for a directional
derivative of V.t; x/ along the direction f1; f .t; x; v/g. This directional derivative
here exists for any direction f1; f g.

The value function V may be also defined under additional assumptions on
smoothness and convexity of the constraints. Given proper continuously differen-
tiable functions ®0.t; x/; ®.t; Ÿ/, convex in x; Ÿ respectively, the initial set and the
constraint on the disturbance Ÿ in (9.3), may be presented in the form

X 0 D fx W ®0.t0; x/ � 1g; R .t/ D fŸ W ®.t; Ÿ/ � 1g: (9.11)

The second inequality, generated by the measurement equation, defines an on-
line state constraint for system (9.1). In particular, functions ®0; ® may be defined
through equalities

®0.t0; x/ D d 2.x; X 0/C1; ®.t; Ÿ.t// D d 2.Ÿ.t/; R .t//C1; Ÿ.t/ D y.t/�g.t; x/;

with set-valued mapping R .t/ being Hausdorff-continuous and function y.t/ being
right-continuous. As before, here d.y�; Y / D minfky� � yk y 2 Y g is the
Euclidean distance function for set Y . Such types of constraints are common for
both linear and nonlinear systems. Using these constraints in what follows will allow
to present the solutions in a more transparent form.

Version B

Assume given is the realization y.�/ D yŒ�� of the observation y on the interval
Œt0; t �.

Problem 9.2.2. Given are system (9.1) and starting position ft0; X 0g; according
to (9.11). Find the value function
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V .1/.t; x/ D

D min
v

f®0.t0; xŒt0�/ j xŒt � D x; ®.s; y.s/ � g.s; xŒs�// � 1; s 2 Œt0; t �g: (9.12)

Denoting hV .1/
x ; f .t; x; v/i D H .t; x; V

.1/
x ; v/; consider the equation

V
.1/

t Cmax
v

fH .t; x; V .1/
x ; v/ j v 2 Q ™.t; x/g D 0; V .1/.t0; x/ D ®0.t0; x/ (9.13)

where

Q ™.t; x/ D
�

Q .t/; ™.t; x/ < 1;

Q .t/ \ fv W d™.t; x/=dt jv � 0g; ™.t; x/ � 1

and ™.t; x/ D ®.t; yŒt � � g.t; x//.

Theorem 9.2.1. Function V .1/ is a solution to Eq. (9.13), with indicated boundary
condition.

The proof of this assertion follows the lines of (7.9)–(7.15) and the proof of
Lemma 7.1.4. Similar to our previous conclusions we have

Lemma 9.2.1. If for y D yŒs� (s 2 Œt0; t �) Eq. (9.13) has a solution V .1/.t; x/,
(classical or generalized), then the following equality is true

X Œ£� D fx W V .1/.£; x/ � 1g: (9.14)

Remark 9.2.1. The suggested Versions A and B lead to different HJB equations
and serve to solve the original Problem 9.1.1 under different assumptions on the
problem data. Namely, Version-B requires additional assumptions on smoothness
and convexity of the state constraints produced by the measurement equation. In
the general nonlinear case this difference may affect the smoothness properties of
respective solutions V.t; x/; V .1/.t; x/. On the other hand, the Comparison Principle
of the next subsection does not depend on the smoothness properties of original HJB
equations for Versions A and B.

9.2.2 Comparison Principle for HJB Equations

Version A

Introduce the notation

H.t; x; p/ D maxfhp; f .t; x; v/ijv 2 Q .t/g � d 2.y.t/ � g.t; x/; R .t//:
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Then the related HJB equation (9.10) transforms into

Vt C H.t; x; Vx/ D 0; V .t0; x/ D d 2.x; X 0/: (9.15)

We will now obtain an external approximation of X Œt � which in the linear case will
be exact. We proceed as follows.

Assumption 9.2.1. Given are functions H.t; x; p/, wC.t; x/ 2 C1 and �.t/ 2 L1,
which satisfy the inequalities

H.t; x; p/ � H.t; x; p/; 8ft; x; pg; (9.16)

wC
t C H.t; x; wC

x / � �.t/: (9.17)

Theorem 9.2.2. Suppose H.t; x; p/; wC.t; x/; �.t/ satisfy Assumption 9.2.1. Then
the following estimate for the information set X Œt � holds:

X Œt � 	 XCŒt �; (9.18)

where

XCŒt � D
�

x W wC.t; x/ �
Z t

t0

�.s/ds C maxfwC.t0; x/ j x 2 X 0g
�

: (9.19)

The proof is similar to Sect. 7.1.2, Theorem 7.1.1.

Remark 9.2.2. Condition (9.19) may be complemented by the following:

wC.t0; x/ � V.t0; x/:

Then the last term in (9.19) may be substituted by V.t0; x/.

Version-B

After introducing notation

H1.t; x; p; p0; œ/ D maxfhp; f .t; x; v/i � œhp0; f .t; x; v/i jv 2 Q .t/g;

the corresponding “forward” HJB equation (9.13) transforms into

V
.1/

t C œ™t C H1.t; x; V .1/
x ; ™x; œ/ D 0; V .1/.t0; x/ D ®0.t0; x/ (9.20)

where the multiplier œ is to be found from the condition

d™.t; x/=dt j(9.1) D ™t C h™x; f .t; x; v/i � 0; (9.21)
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which allows one to calculate X Œt � D X .t; t0; X 0/ as the level set X Œ£� D fx W
V .1/.£; x/ � 1g: This property is independent of whether V .1/ is a classical or a
generalized solution to Eq. (9.20). The comparison theorem and the respective proof
are similar to Sect. 7.1.2, Theorem 7.1.1.

We now pass to the class of linear systems with convex constraints where the
previous results may be developed with greater detail.

9.2.3 Linear Systems

Consider system (9.1) to be linear, so that

Px D A.t/x C C.t/v; (9.22)

under same constraint (9.2) on v. The measurement equation is also taken to be
linear

y.t/ D G.t/x C Ÿ.t/; (9.23)

with constraint (9.4) on Ÿ. The functions Q .t/; R .t/ are assumed ellipsoidal-valued,
described by nondegenerate ellipsoids,

.a/ v 2 Q .t/ D E.q.t/; Q.t//I .b/ Ÿ.t/ 2 R .t/ D E.0; R.t//; (9.24)

with matrix-valued functions Q0.t/ D Q.t/ > 0; R0.t/ D R.t/ > 0 and Hausdorff-
continuous. The bound on the initial vector x.t0/ is also an ellipsoid:

x.t0/ 2 X 0 D E.x0; X0/;

so that the starting position is ft0; E.x0; X0/g.
With y.t/ D yŒt � being the available measurement that arrives on-line, we come

to the on-line state constraint

G.t/x.t/ 2 yŒt � C E.0; R.t// D Ry.t/: (9.25)

To solve Problem 9.1.1 for the linear case we now approach the versions for
Problems 9.2.1 and 9.2.2 of dynamic optimization.

Denote

k2.t; x/ D hyŒt � � G.t/x; R�1.t/.yŒt � � G.t/x/i;
and

¦.t/ D 1; if k2.t; x.t// � 1 > 0I ¦.t/ D 0; if k2.t; x.t// � 1 � 0:

Further denote .f .x//C D f .x/ if f � 0 and f .x/ D 0 otherwise.
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Version LA

The information set X Œt � may be expressed as the level set

X Œt � D fx W V.t; x/ � 0g; (9.26)

for value function

V.t; x/ D min
v

f®0.x/ C
Z t

t0

.k2.s; x.s// � 1/Cds j x.t/ D xg; t � t0: (9.27)

where ®0.x/ D .hx � x0; .X0/�1.x � x0/i � 1/C and .k2.t; x.t// � 1/C D
¦.t/.k2.t; x.t// � 1/: Then Eq. (9.10) transforms into

Vt ChVx; A.t/x CC.t/q.t/iChVx; C.t/Q.t/C 0.t/Vxi1=2 �¦.t/.k2.t; x/�1/ D 0;

(9.28)
with boundary condition

V.t0; x/ D ®0.x/ D .hx � x0; .X0/�1.x � x0/i � 1/C: (9.29)

Version LB

To track the on-line state constraint generated by measurement y.t/ we have to
calculate the total derivative of function k2.t; x/ D ™.t; x/ along our system (9.22).
So

d™.t; x/=dt D ™t .t; x/ � 2hR�1.t/.yŒt � � G.t/x/; G.t/.A.t/x C C.t/v/i

and Eq. (9.13) transforms into

V
.1/

t C œ™t C max
v

fhV .1/
x C œ™x; A.t/x C C.t/vi j v 2 E.q.t/; Q.t//g D 0;

or, with additional notations G0.t/R�1.t/y.t/ D z.t/; G0.t/R�1.t/G.t/ D G.t/,
into

V
.1/

t C œ™t C œhV .1/
x � 2œ.z.t/ � G.t//x; A.t/x C C.t/q.t/i C H 0.t; x; œ/ D 0;

(9.30)

where

H 0.t; x; œ/ D max
v

fhV .1/
x � 2œ.z.t/ � G.t/x/; C.t/vi j v 2 E.0; Q.t//g D

D hV .1/
x � 2œ.z.t/ � G.t/x/; C.t/Q.t/C 0.t/.V .1/

x � 2œ.z.t/ � G.t/x//i1=2:
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The multiplier œ D œ.t; x/ should be calculated from relation

™t .t; x/ � 2 hz.t/ � G.t/x; A.t/x C C.t/v�i � 0; (9.31)

where

v� D Q.t/C 0.t/.V .1/
x � 2œ.z.t/ � G.t/x//H 0.t; x; œ/�1:

The next move is to approximate the exact solutions given in this subsection by
using the comparison principle. This is done through an application of ellipsoidal
approximations. The next scheme will rely on a deductive approach to the derivation
of ellipsoidal estimates (see also Sect. 5.1.2) in contrast with Chap. 7, where such
estimates were achieved due to inductive procedures introduced in Chap. 3.

9.3 Ellipsoidal Approximations

These approximations are given in two versions.

9.3.1 Version AE

Recalling (9.15) with function

H.t; x; p/ D maxfhp; A.t/x C C.t/vi j v 2 Q .t/g � ¦.t/.k2.t; x/ � 1/

we use relation

hp; C.t/Q.t/C 0.t/pi1=2 � ”2.t/ C .4”2.t//�1hp; C.t/Q.t/C 0.t/pi; 8p 2 Rn;

(9.32)
with equality reached for ”2.t/ D .1=2/hp; C.t/Q.t/C 0.t/pi1=2. Denoting

H.t; x; p/ D hp; A.t/x C C.t/q.t/i C ”2.t/ C .4”2/�1hp; C.t/Q.t/C 0.t/pi�

�¦.t/.k2.t; x/ � 1/;

we then have

H.t; x; p/ � H.t; x; p/

for all values of ft; x; pg.
We shall further approximate the function V.t; x/ in the domain x 2 Rn; t � t0

by one of type
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w.t; x/ D hx � x�.t/; P.t/.x � x�.t//i C h2.t/ � 1; (9.33)

with differentiable h2.t/; P.t/ D P 0.t/ > 0. We assume k2.t; x/ � 1; so that
¦.t/ D 1 explaining later that here this is the main case. Then

wt C H.t; x; wx/ D

D wt C hwx; A.t/x C C.t/q.t/iC

Chwx; C.t/Q.t/C 0.t/wxi1=2 � ¦.t/.k2.t; x/ � 1/ �

� wt C H.t; x; wx/ D wt C hwx; A.t/x C C.t/q.t/iC

C”2.t/ C .4”2.t//�1hwx; C.t/Q.t/C 0.t/wxi�

�¦.t/.hy.t/ � G.t/x; R�1.t/.y.t/ � G.t/x/i � 1/;

and substituting w.t; x/; into these relations we get

wt C H.t; x; wx/ � hx � x�.t/; PP .t/.x � x�.t//i�

�2h Px�.t/; P.t/.x � x�.t//i C 2hP.t/.x � x�.t//; A.t/x C C.t/q.t/iC

C.”2.t//�1hP.t/.x � x�.t/; C.t/Q.t/C 0.t/P.t/.x � x�.t//i C ”2.t/�

� ¦.t/.hy.t/ � G.t/x; R�1.t/.y.t/ � G.t/x/i � 1/ C ¦.t/d.h2.t//=dt; (9.34)

with ¦.t/ D 1.
Continuing further with ¦.t/ D 1, we demand that the right-hand side in (9.34)

is treated as follows. We separately equate with zero the terms with multipliers of
second order in x � x�, then those of first order in the same variable, then free
terms, excluding ”2.t/ C ¦.t/. We finally observe that the equated elements of the
right-hand side of (9.34) will be zeros if and only if the following equations are true:

PP C P 0A.t/ C A0.t/P C .”2.t//�1P C.t/Q.t/C 0.t/P � ¦.t/G0.t/R.t/G.t/ D 0;

(9.35)

Px� D A.t/x�.t/CC.t/q.t/C¦.t/P �1.t/G0.t/R.t/.y.t/�G.t/x�.t//; (9.36)

Ph2 D hy.t/ � G.t/x�.t/; R.t/.y.t/ � G.t/x�.t//i; (9.37)

with boundary conditions

P.t0/ D .X0/�1; x�.t0/ D x0; h2.t0/ D 0:
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Relations (9.33)–(9.37) together with some further calculation bring us the
inequality

dw=dt � ”2.t/ C ¦.t/: (9.38)

Functions H.t; x; p/; w.t; x/ satisfy Assumption 9.2.1. Hence we are in the position
to apply Theorem 9.2.2. We proceed as follows.

Definition 9.3.1. A measurement y.t/ is said to be informative on the interval
Œt; t C ¢�; ¢ > 0; if constraint (9.25) is active throughout this interval.

Let X 0Œs� D X 0.s; t; X Œt �/ stand for the reachability set at time s � t; for
system (9.22) without state constraints, emanating at time t from X Œt � and recall
that X Œs� D X .s; t; X Œt �/ is the information set gotten under active measurement
output state constraints. Then Definition 9.3.1 means that for all s 2 Œt; t C ¢�; it
should be X Œs� � X 0Œs�: Namely, taking into account the measurement y.s/ must
diminish set X 0Œs� towards X Œs�.

Assumption 9.3.1. The available measurement y.s/ D yŒs� is informative on any
interval t < s � t C ¢ taken within Œt0; ª�.

Remark 9.3.1. Since we are actually approximating the reach set from above,
we always deal with informative measurements which yield solutions that satisfy
Assumption 9.3.1.

This means we further assume ¦.t/ � 1 throughout Œt0; ª�.
Integrating inequality (9.38) from t0 to t; along a trajectory xŒs� D x.s; t0; x0/;

xŒt � D x; s 2 Œt0; t � that runs as xŒs� 2 X Œs�; under disturbance v.s/ 2 E.q.s/;

Q.s//; with measurement y.s/ D yŒs� under disturbance Ÿ.s/ 2 E.0; R.s//; we get

w.t; x/ �
Z t

t0

.”2.s/ C 1/ds � w.t0; xŒt0�/ D V.t0; xŒt0�/: (9.39)

Further substituting w.t; x/ and taking into account (9.33), we have

hx � x�.t/; P.t/.x � x�.t//i C h2.t/ � 1 �
Z t

t0

.”2.s/ C 1/ds C V.t0; x.t0//:

Then, keeping (9.26) in mind, we come to inequality

hx � x�.t/; P.t/.x � x�.t//i � 1 � h2.t/ C
Z t

t0

.”2.s/ C 1/ds D “.t/; (9.40)

where P.t/ depends on parameter ”2.t/.
This leads to the final conclusion
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Theorem 9.3.1. An external set-valued estimate of information set X Œt � is the
ellipsoid

E.x�.t/; P �1.t/“.t//;

defined by (9.40), where functions P.t/; x�.t/; h.t/ are described by Eqs. (9.35)–
(9.37) under boundary conditions

P.t0/ D .X0/�1; x�.t0/ D x0; h2.t0/ D 0:

This estimate is true for any Lebesgue-integrable function ”2.t/.

This theorem gives us an array of ellipsoids E”Œt � D E.x�.t/; “.t/P �1.t//,
parameterized by ”, each of which is an external estimate for X Œt �. Moreover, the
schemes of Chap. 3 yield the next property

Lemma 9.3.1. The information set X Œt � D \fE”Œt � j ”2.�/g.

The exact information set is therefore presented as an intersection of all external
ellipsoidal estimates of the form given above. Among these one may of course seek
for an optimal one or the one most appropriate for a related problem of control.

Remark 9.3.2. (i) Condition ¦.t/ D 0 indicates that measurement yŒt � brings no
innovation into the estimation process and is redundant, so X 0Œs� D X Œs�. Then,
instead of the information set under on-line state constraint, the formulas achieved
above describe the reachability set X 0Œs� without state constraints. You just have to
take ¦.t/ D 0; h.t/ D 0 in all these relations.

9.3.2 Version-BE

Consider Eq. (9.30). Applying inequality (9.32) to H 0.t; x; œ/; we get

V
.1/

t C œ™t C œhVx � 2œ.z.t/ � G.t/x/; A.t/x C C.t/qi C H 0.t; x; œ/ �

� V
.1/
t Cœ™t CœhVx �2œ.z.t/�G.t/x/; A.t/xCC.t/qiC”2.t/C.4”2.t//�1.H 0.t; x; œ//2:

(9.41)

Then we again take w.t; x/ in the form (9.33). Substituting w.t; x/ into the right-
hand side of the last relation we further follow the previous scheme of Version-A
now applying it to (9.41). This time we come to equations

PP C P.A.t/ C œG.t//0 C .A.t/ C œG.t//P C

C .”2.t//�1P C.t/Q.t/C 0.t/P C œ2.t/G0.t/R�1.t/G.t/ D 0; (9.42)
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Px� D A.t/x�.t/ C C.t/q.t/ � œ.z.t/ � G.t/x�.t//; (9.43)

Ph2 D hz.t/ � G.t/x�; R�1.t/.z.t/ � G.t/x�/i; (9.44)

with boundary conditions

P.t0/ D .X0/�1; x�.t0/ D x0; h2.t0/ D 0:

These equations should be taken with any multiplier œ < 0; that satisfies (9.31).
The set of all such multipliers is further denoted as ƒ. Therefore now P.t/ D
P”œ.t/. The further procedures are similar to Version AE, transforming P into
P”œ.t/ and thus allowing to formulate in the next form.

Theorem 9.3.2. The set X Œt � 	 E.x�.t/; “.t/P �1
”œ .t//; where

E.x�.t/; “.t/P �1
”œ .t// D fx W hx � x�.t/; “�1.t/P”œ.t/.x � x�.t//i � 1g;

and functions P”œ.t/; Px�.t/ are described by Eqs. (9.42)–(9.44), with ”2.t/ > 0 and
œ 2 ƒ.

9.3.3 Example: Information Set for a Linear System

Given is the system

Px1 D x2;

Px2 D �x1 C v; jvj � 1
(9.45)

at t 2 Œ0; ª�, with observation

y.t/ D x1 C Ÿ.t/; Ÿ.t/ 2 R D Œ�1; 1� (9.46)

and initial set

x.0/ 2 X 0 D ˚
x
ˇ̌

x2
1 C x2

2 � 1
�

: (9.47)

Following (4.5) the reachability set without measurement state constraint will be
described as X Œt � D X .t; 0; X 0/ D X0Œt � C XvŒt � where

X0Œt � D G.t; 0/X 0; G.t; s/ D
�

cos.t � s/ sin.t � s/

� sin.t � s/ cos.t � s/

�
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and

XvŒt � D fx W x D
Z t

0
G.t � s/Q .s/dsg; Q .s/ D Q D fq W q D bv; jvj � 1g; b0 D f0; 1g:

The measurement state constraint is x.t/ 2 Y .t/ D fx W x1.t/ 2 y.t/ � R g.
Thus the reachability set XyŒt � under constraint Y .t/ is the solution to the funnel

equation

lim
¢!0C0

¢�1h.XyŒt C ¢�; f.I C ¢A/XyŒt � C ¢Q .t/g \ Y .t// D 0; XyŒ0� D X 0:

The illustrations below are done for y.t/ � 0. Then Y .t/ D R and the recurrent
relation for calculating XyŒt � is

XyŒt C ¢� D ..I C ¢A/XyŒt � C ¢Q .t// \ R C o.¢/:

The boundary of the reachability set X .t/ D X .t; 0; X 0/ at time t D � without
measurement constraint in the illustrations is green. The measurement constraint Y
is a stripe bounded by parallel red lines. The other sets are illustrated for measure-
ment y.t/ � 0 generated under actually realized inputs x0 D 0; jv.t/j � 1; jŸ.t/j �
1, which we do not know. Then, at t D � the boundary of the exact reachability
set XyŒt � at t D � under such measurement consists of four parts: two circu-
lar arcs

˚
.1 � 2 cos ™; 2 sin ™/ ; ™ 2 Œ0; �

2
�
�
,
˚
.2 cos ™ � 1; �2 sin ™/ ; ™ 2 Œ0; �

2
�
�

and
two intervals f�1g � Œ�2; 0�, f1g � Œ0; 2� located on the red lines. This boundary is
shown in orange. Also shown are the ellipsoidal approximations of XyŒ��.

Exercise 9.3.1. Find the boundaries for sets X Œt � (green) and XyŒt � (orange) shown
in Fig. 9.1 by straightforward calculation.

We now make a detour to systems with discrete observations under continuous
and discrete dynamics. Related formulas may be useful for calculations.

9.4 Discrete Observations

9.4.1 Continuous Dynamics Under Discrete Observations

Let y.£i /; £i 2 Œt0; t � ; i D 1; : : : ; N.t/; be the sequence of measurements (9.5)
for system (9.1). Consider

Problem 9.4.1. Given system (9.1), (9.5) with starting position ft0; X 0g and mea-
surements y.£i /, find function
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Fig. 9.1 Reachability set X Œ�� without constraint Y in green. Reachability set Xy Œ�� with
constraint Y in orange. State constraint Y in red

V.t; x/ D min
v

fd 2.x.t0/; X 0/ C
N.t/X
iD1

d 2.y.£i / � g.£i ; x.£i //; R .£i // j x.t/ D xg:
(9.48)

Following (9.26) , (9.25) denote

X Œ£� D fx W V.£; x/ � 0g; XyŒ£� D fx W g.£; x/ 2 y.£/ � R .£/g:

The solution to the last problem is to be taken as a recurrent procedure with V.s; x/

being the solution to equations

Vs C maxfhVx; f .s; x; v/i j v 2 Q .s/g D 0; V .t0; x/ D d 2.x; X 0/; s 2 Œt0; £1�;

so that Xd Œ£1� D X Œ£1� \ XyŒ£1� and with further relations

VsCmaxfhVx; f .s; x; v/i j v 2 Q .s/g D 0; s 2 Œ£i ; £iC1�; V .£i ; x/ D V.t; x/jtD£i ;

(9.49)
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and

Xd Œ£iC1� D X Œ£iC1� \ XyŒ£iC1�; X Œ£iC1� D fx W V.£iC1; x/ � 0g: (9.50)

This results in

Theorem 9.4.1. The information set for Problem 9.4.1 is

Xd Œt � D X .t; £N.t/; Xd .£N.t///; (9.51)

where with t D £N.t/ we have Xd .t/ D X .£N.t//.

For the linear case, keeping in mind the formal relation

N.t/X
iD1

d2.y.£i / � g.£i ; x.£i //; R .£i // D
Z t

t0

d 2.y.s/ � g.s; x.s//; R .s//

N.t/X
iD1

•.s � £i /ds;

we may derive for V.t; x/ a related HJB-type equation, similar to (9.10), presenting
it in symbolic form as an equation in distributions, [242],

Vs CmaxfhVx; f .s; x; v/ijv 2 Q .s/g�
N.t/X
iD1

•.s�£i /d
2.y.s/�g.s; x.s//; R .s// D 0;

(9.52)

seeking V.t; x/, according to the theory of distributions, as a weak solution to this
equation.

In the last case the formal procedures for deriving tight external ellipsoids may
follow those of Version-A. However, here we indicate a slightly different route by
directly applying Theorem 9.4.1. Namely, for s 2 Œt0; £1�; take

PP C PA.s/ C A0.s/P � �2.s/P � .�2.s//�1P C.s/Q.s/C 0.s/P D 0; P.t0/ D .X0/�1;

Px� D A.s/x�.s/ C C.s/q.s/; x�.t0/ D x0; h.s/ � 0:

Then at s D £1 we should find an external ellipsoidal approximate EC
d Œ£1� D

E.x�
d .£1/; Pd .£1// for

E.x�.£1/; P.£1// \ Xy.£1/ 	 E.x�
d .£1/; Pd .£1//;

continuing at s > £1 with P.£1 C 0/ D Pd .£1/; x�.£1 C 0/ D x�
d .£1/.

Proceeding further, we have, for s 2 .£i ; £iC1�:

PP CPA.s/CA0.s/P ��2.s/P �.�2.s//�1P C.s/Q.s/C 0.s/P D 0; P.£i C0/ D Pd .£i /;

Px� D A.s/x�.s/ C C.s/q.s/ D 0; x�.£i C 0/ D x�
d .£i /;
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where

EC
d

Œ£iC1� D E.x�
d .£iC1/; Pd .£iC1// 
 E.x�.£i /; P .£i // \ Xy.£i /; i D 1; : : : ; N.t/ � 1;

and the array of external ellipsoids EC
d may be found through one of the schemes

given in Chap. 3, Sect. 3.2.
The treatment of ellipsoidal techniques for internal approximations of informa-

tion sets in linear systems may be achieved along the schemes of Sects. 3.7 and 3.12.

9.4.2 Discrete Dynamics and Observations

A frequent approach is to restrict the investigation to discrete-time models of system
dynamics and observations. Here are the related equations.

Discrete-Time Processes

Consider a multistage process described by a recurrent equation

x.k C 1/ D f .k; x.k// C C.k/v.k/; k � k0; x.k0/ D x0; (9.53)

Here f .k; x/ is a given map from N � Rn into Rn (N is the set of integers), C.k/

are given matrices. The vector-valued inputs v.k/ are taken in Rp; p � n. These
vectors, together with x0, are unknown but bounded, with hard bounds

x0 2 X0; v.k/ 2 P.k/; (9.54)

where X0, P.k/ are convex, compact sets in spaces Rn and Rp , respectively.
The available information on x.k/ is confined to measurement outputs given by

y.k/ D G.k/x.k/ C Ÿ.k/; k D k0 C 1; : : : ; N; (9.55)

where observations y.k/ 2 Rm and matrices G.k/ are known while measurement
disturbances Ÿ.k/ are unknown but bounded, with

Ÿ.k/ 2 Q.k/; (9.56)

where Q.k/ � Rm is convex and compact.
Here yŒk; l� D fy.k/; : : : ; y.l/g will stand for the sequence of measurements

that arrive due to Eq. (9.55) throughout stages s, from k to l . Similarly hŒr; s� D
fh.r/; : : : ; h.s/g will stand for a sequence of vectors hi ; i D r; : : : ; s, taken,
respectively, from set-valued sequence FŒr; s� D fF.r/; : : : ; F.s/g . Then hŒr; s� 2
FŒr; s� will stand for a sequence of inclusions h.i/ 2 F.i/, i D r; : : : ; s. Hence, with
h.i/ 2 Rq we will have hŒ1; s� 2 Rq�s D R

q
1 � : : : � R

q
s , where R

q
i D Rq , for

i D 1; : : : ; s.
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Symbol xŒk� D x.k; vŒk0; k �1�; x0/ will be the end of trajectory x.j / of (9.53),
that develops through Œk0; k� with x0 and vŒk0; k � 1� given.

As before the information set XyŒs� D Xy.s j t; k; F/ is the collection of all
points xŒs� 2 Rn that arrive at time s (k � s) due to such trajectories of system
(9.53) that emanate from state x.k/ D x�; evolve throughout interval Œk; t � and also
produce the measured realization yŒk; s� for some triplet fx�; v; Ÿg constrained by
inclusions

x� 2 F; vŒk; t � 1� 2 PŒk; t � 1�; ŸŒk C 1; t � 2 QŒk C 1; t �: (9.57)

We also denote Xy.t; k; F/ D Xy.t j t; k; F/.

Lemma 9.4.1. Whatever be s, l , £, given realization yŒk; l� given, the following
relations are true

Xy.t; k; F/ D Xy.t; s; Xy.s; k; F//; t � s � k; (9.58)

Xy.s j t; k; F/ D Xy.s j t; l; Xy.l j £; k; F//:

The given conditions ensure that the mapping Xy.t; k; F/ W compRn ! compRn

defines a generalized dynamic system similar to Xy.t; t0; X 0/ of Sect. 8.3.1, but
under discrete time.

In the general case sets XyŒt � defined here may turn out to be nonconvex and
even disconnected. However the next property is true.

Lemma 9.4.2. Let F be a closed, convex set in Rn, and f .k; x/ D A.k/x be a
linear map. Then sets Xy.s j t; k; F/ are closed and convex.

As before, the problem is to describe information sets XyŒs� and the related
information tube XyŒk; s�; s 2 Œk0; t �—now a sequence of sets XyŒs�.

Multistage Systems: Information Tubes

Returning to system (9.53)–(9.56), consider set XyŒs� D Xy.s; k0 C 1; X0/ omitting
further the lower index y.

Together with XŒs� consider two other sets, namely,

X�Œs� D X�.s; k0 C 1; X0/ and X�Œs� D X�.s; k0 C 1; X0/:

Here are their definitions. Taking

z.k C 1/ 2 f .k; co Z�.k// C C.k/P.k/;

y.k C 1/ 2 G.k C 1/z.k C 1/ C Q.k C 1/; Z�.k0/ D X0; k � k0; (9.59)
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where Z�.s/ D Z�.s; k0 C 1; X0/ D fz.s/g are solutions to (9.59) at stage s �
k0 C 1, we get

X�Œs� D co Z�Œs� D co Z�.s; k0 C 1; X0/ D X�.s; k0 C 1; X0/:

Similarly, define system

z�.k C 1/ 2 co f .k; Z�.k// C C.k/P.k/;

y.k C 1/ 2 G.k C 1/z�.k C 1/ C Q.k C 1/; (9.60)

with solution Z�.s/ D fz�.s/g D Z�.s; k0 C 1; X0/, s � k0 C 1, under Z�.k0/ D
X0. Then we get Z�.s/ D X�Œs�.

Sets X�Œs�, X�Œs� are obviously convex and the next inclusions are true;

XŒs� 	 X�Œs� 	 X�Œs�: (9.61)

Remark 9.4.1. Note that apart from X�Œs�, X�Œs� one may introduce other sequences
which at each respective stage may be chosen as either (9.59), or (9.60).

We first describe sets X�Œs� D X.s; k0 C 1; X0/, using notation

Y.k/ D fx 2 Rn j y.k/ � G.k/x 2 Q.k/g;

and X?.s; j; F/ as the solution X?.s/ to equation

X?.k C 1/ D co f .k; X?.k// C C.k/P.k/; j � k � s � 1

with X?.k0/ D F. Then the recurrent evolution equation will be as follows.

Lemma 9.4.3. Let yŒk0 C 1; k� be the sequence of realized measurements y due to
system (9.53)–(9.56). Then the next equalities are true:

X�Œk� D X�.k; k0 C 1; X0/ D X?.k; k � 1; X�Œk � 1�/ \ Y.k/; k0 � k; (9.62)

The last equation indicates that the innovation introduced by each new
measurement y.k/ arrives through an intersection of set X?.k; k � 1; X�Œk � 1�/—
the estimate at stage k before arrival of measurement y.k/ with Y.k/ derived
from y.k/.

A One-Stage System. For further calculation we need some additional details.
Consider the one-stage system (z 2 Rn; y 2 Rm)

z 2 f .X/ C C P; Gz � y 2 Q; (9.63)
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and

z� 2 co f .X/ C C P; Gz� � y 2 Q; (9.64)

where f .X/ D Sff .x/ j x 2 Xg and as before, co F is the closure of the convex
hull of set F.

Let Z and Z� stand for the sets of all solutions fzg and fz�g to the last system.
Obviously we have

Z 	 coZ 	 Z�

where set Z� is convex.

Exercise 9.4.1. Give an example indicating when sets Z; coZ; Z� do not coincide
(see [113]).

Applying methods of convex analysis, we come to the following property.

Lemma 9.4.4. The next relations are true:

Z 	 R.M; f .X//; Z� 	 R.M; co f .X/; 8M 2 Rm�n;

where

R.M; F/ D .In � MG/.F � C P/ C M.y � Q/:

These relations allow to approach exact solutions due to the next assertion, given in
a form similar to Chaps. 3, 7, and 8.

Theorem 9.4.2. The exact relations for Z; Z� are:

Z D
\

fR.M; f .X// j M 2 Rm�ng; (9.65)

Z� D
\

fR.M; co f .X// j M 2 Rm�ng: (9.66)

Multistage Information Tubes: Evolution Equations

These relations may now be propagated to multistage recurrent equations that
describe information tubes XŒk�, X�Œk�, X�Œk�. Consider system

Z.k C 1/ D .En � M.k C 1/G.k C 1//ŒF.k; D.k// C C.k/P.k/�C

C M.k C 1/.y.k C 1/ � Q.k C 1//; (9.67)

D.k C 1/ D
\

fZ.k C 1/ j M.k C 1/ 2 R
m�ng; D.k0/ D X0; (9.68)
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where F.k; D/ is a mapping from N � Rn into Rn. Solving these equations for
k0 � k � s and having in mind Theorem 9.4.2, we get

Z.s/ D XŒs�; if F.k; D.k// D f .k; D.k//; (9.69)

Z.s/ D X�Œs�; if F.k; D.k// D co f .k; D.k//: (9.70)

If we now substitute (9.70) for

D.k C 1/ D co
\

fZ.k C 1/ j M.k C 1/ 2 Rm�ng; (9.71)

then solutions to (9.67), (9.71) yield the following result

Z.s/ D X�Œs�; if F.k; D.k// D f .k; D.k//: (9.72)

We finally come to the conclusion

Theorem 9.4.3. (i) Inclusions (9.61) are true.
(ii) Equalities (9.69), (9.70) are true due to system (9.67) and (9.68).

(iii) Equality (9.72) is true due to relations (9.67) and (9.71).

Remark 9.4.2. The last theorem indicates relations that may be used to approach
exact set-valued estimates of XŒk�; X�Œk�; X�Œk� for k0 � k � s. They require
intersections over M at each stage “k” of the evolution process. However the
intersections may all be made at the end k D s of the process, being taken over
all sequences MŒk0; s�. Such procedures may be especially convenient for linear
systems in conjunction with ellipsoidal calculus.

Exercise 9.4.2. Compare the computational complexity for both types of intersec-
tions indicated in previous remark.

Following the last remark, consider linear map f .k; Z.k// D A.k/Z.k/ D
cof .k; Z.k//. Now take the set-valued equation

Z.k C 1/ D .En � M.k C 1/G.k C 1//.F.k; Z.k// C C.k/P.k//C

C M.k C 1/.y.k C 1/ � Q.k C 1//; Z.k0/ D X0: (9.73)

Denote the solution tube to this equation as

Z.s/ D Z.s; k0; F.�/; M.�/; X0/; where F.�/ D F.k; Z.k//;

M.�/ D MŒk0; s�; where MŒk0; s� D fM.k0 C 1/; : : : ; M.s/g
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Denoting

Z.s; F.�/; X0/ D
\

fZ.s; k0; F.�/; M.�/; X0/ j MŒk; s� 2 Rm�ng; (9.74)

we come to the conclusion

Theorem 9.4.4. For a linear mapping F.k; Z.k// D A.k/Z.k/ , (k D k0; : : : ; s),
with convex X0, we have

Z.s; F.�/; X0/ D XŒs� D X�Œs� D X�Œs�: (9.75)

9.5 Viability Tubes: The Linear-Quadratic Approximation

Though the problem considered further is formulated under hard bounds on the
system inputs and system trajectories, the calculation of related trajectory tubes may
be also achieved through quadratic approximations.

Let us return to the problem of finding viability tube XyŒt � D Xy.t; t0; X 0/ for
system

Px 2 A.t/x C Q .t/; x.t0/ 2 X 0; (9.76)

G.t/x 2 Y .t/; (9.77)

where set-valued maps Q .t/, Y .t/ and set X 0 are the same as in Sect. 9.1.
The support function for convex compact set XyŒt � may be calculated directly, as

a linear-quadratic problem, similar to Sects. 1.6 and 2.2.This gives

¡.l j XyŒt �/ D inff‰t .l; œ.�// j œ.�/ 2 Lm
2 Œt0; £�g; (9.78)

where

‰t .l; œ.�// D ¡

�
S 0.t0; t/l �

Z t

t0

S 0.t0; £/G0.£/œ.£/d£

ˇ̌
ˇ̌ X0

�
C

C
Z t

t0

¡

�
S 0.£; t/l �

Z t

£

S 0.£; s/G0.s/œ.s/ds

ˇ̌
ˇ̌ Q .£/

�
d£C

C
Z t

t0

¡.œ.£/ j Y .£//d£:

We shall rewrite system (9.76), (9.77) in the form

Px D A.t/x C v.t/; x.t0/ D x0; G.t/x D w.t/; (9.79)
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where measurable functions v.t/, w.t/ and vector x0 satisfy the inclusions

v.t/ 2 Q .t/; w.t/ 2 Y .t/; x0 2 X 0: (9.80)

The viable information tube XyŒt � may then be described as a multivalued map
Xy.t; t0; X 0/ generated by the set (the bundle) of all trajectories x.t; t0; x0/ of
system (9.79) that are consistent with constraints (9.80).

The calculation of XyŒt � for a given instant t D £ will now run along the
following scheme. Let us fix a triplet k�.�/ D fv�.�/; w�.�/; x�

0 g where v�.�/, w�.�/,
x�

0 (t 2 Œt0; £�) satisfy the constraints (9.80):

k�.�/ 2 Q .�/ � Y .�/ � X 0; Y .t/ D y.t/ � R .t/; (9.81)

as in (9.2), (9.3).
Instead of handling (9.80) we shall now consider a “perturbed” system, which is

Pz D A.t/z C v�.t/ C ˜.t/; z.t0/ D x0� C —0; t0 � t � £; (9.82)

G.t/z D w�.t/ C Ÿ.t/;

Elements d.�/ D f—0; ˜.�/; Ÿ.�/g represent the unknown disturbances bounded
jointly by quadratic inequality

—00
M—0 C

Z £

t0

˜0.t/R.t/˜.t/dt C
Z £

t0

Ÿ0.t/H.t/Ÿ.t/dt � �2; (9.83)

where fM; R.�/; H.�/g 2 = and symbol = stands for the product space

= D Rn�nC � Rn�nC Œt0; £� � Rm�mC Œt0; £�;

with Rr�rC Œt0; £� denoting the class of all r � r-matrix functions N.�/ 2 Rr�r Œt0; £�

whose values N.t/ are symmetric and positive definite.
For every fixed k�.�/, ƒ D fM; R.�/; H.�/g and � denote ZŒ£� D Z.£; k�; ƒ; �/

to be the set of all states z.£/ of system (9.82) that are consistent with con-
straint (9.83). The support function of this set is

¡.l j ZŒ£�/ D max
d.�/ fhl; z.£/i j d.�/ W (9.83)g (9.84)

It is well known that ZŒ£� D Z.£; k�; ƒ; �/ is an ellipsoid with center z0Œ£� D
z0.£; k�; ƒ/ that does not depend on � [25, 137]. This can be observed by direct
calculations (see Exercise 1.6.5) which also indicate that z0Œs� satisfies the linear
differential equation
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Pz D .A.s/ � †.s/G0.s/H.s/G.s//z C †.s/G0.s/H.s/w�.s/ C v�.s/; (9.85)

z.t0/ D x�
0 ; t0 � s � £;

where ƒ D fM; R.�/; H.�/g 2 = are fixed and †.�/ is the matrix solution to Riccati
equation

P† D A.s/† C †A0.s/ � †G0.s/H.s/G.s/† C R�1.s/; (9.86)

†.t0/ D M �1; t0 � s � £:

Let us now introduce the set

Z0.£; ƒ/ D
[

fz0.£; k.�/; ƒ/ j k.�/ 2 Q .�/ � Y .�/ � X 0g

which is the union of centers z0Œ£� over all triplets k.�/ D k�.�/ from (9.81).
Set Z0.£; ƒ/ is convex and compact, being the reachability set for system (9.85)

under constraints (9.80), or in other words, of the differential inclusion

Pz 2 .A.t/ � †.t/G0.t/H.t/G.t//z C †.t/G0.t/H.t/Y .t/ C Q .t/; (9.87)

Y .t/ D y.t/ � R .t/; z.t0/ 2 X 0; t0 � t � £;

The support function for Z0.£; ƒ/, which gives a complete description of this set, is
now to be calculated as in Sect. 2.4. It is a closed convex, positively homogeneous
functional

¡.l j Z0.£; ƒ// D ‡.£; l; ƒ/: (9.88)

where

‡.£; l; ƒ/ D .Dƒl/.£/ C L�1
ƒ l

with linear operators Dƒ W Rn ! Lm
2 Œt0; £� and Lƒ W Lm

2 Œt0; £� ! Lm
2 Œt0; £� defined

by relations

.Dƒl/.t/ D G.t/

S.t0; t/M �1S 0.t0; £/C

C
Z t

t0

S.s; t/R�1.s/S 0.s; £/ds
�
l; l 2 Rn; t0 � t � £;

Lƒœ.�/ D .K1 C K2/œ.�/; œ.�/ 2 Lm
2 Œt0; £�;
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.K1œ.�//.t/ D
Z £

t0

K.t; s/œ.s/ds;

K.t; s/ D G.t/.S.t0; t/M �1S 0.t0; s/C

C
Z minft;sg

t0

S.¢; t/ � R�1.¢/S 0.¢; s/d¢/G0.s/;

.K2œ.�//.t/ D H �1.t/œ.t/; t0 � t � £: (9.89)

Here Lƒ is a nondegenerate Fredholm operator of the second kind, so that functional
‡.£; l; ƒ/ is defined correctly for all l 2 Rn and ƒ 2 = [110].

Exercise 9.5.1. Calculate given formulas for operators Dœ and Lœ.

Lemma 9.5.1. The following inequality is true

¡.l j XyŒ£�/ � ¡.l j Z0.£; ƒ// (9.90)

for all l 2 Rn and ƒ 2 = .

From here we immediately come to the next assertion.

Corollary 9.5.1. The viable information tube XyŒ£� may be estimated from above
as follows

XyŒ£� 	
\

fZ0.£; ƒ/ j ƒ 2 =g: (9.91)

Since here we deal with a linear system, the further objective is to emphasize, as
in Theorem 8.2.5 of Sect. 8.2.2, that inclusion (9.91) is actually an equality.

Lemma 9.5.2. Suppose the m�n-matrix G.t/ is of full rank: r.G.t// D m for any
t 2 Œt0; £�. Then for every l 2 Rn the following equalities are true

¡.l j XyŒ£�/ D inff‰£.l; œ.�// j œ.�/ 2 Lm
2 Œt0; £�g D (9.92)

D co inff‡.£; l; ƒ/: j ƒ 2 =g:

Combining formula (9.78), Lemma 9.5.2 and taking into account (9.91) as an
equality, we get

Theorem 9.5.1. Let r.G.t// D m for every t 2 Œt0; £�. Then

XyŒ£� D
\

fZ0.£; ƒ/ j ƒ 2 =g: (9.93)
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Theorem 9.5.1 gives a precise description of XyŒ£� through solutions Z0.£; ƒ/ of
the linear-quadratic problem (9.82)–(9.83) by varying the matrix parameters ƒ D
fM; R.�/; H.�/g in the joint integral constraint (9.83).

Finalizing this section we emphasize that described above is a parameterized
family of set-valued estimators Z0.£; ƒ/ which together, in view of Theorem 9.5.1,
exactly determine the set XyŒ£�.

Theorem 9.5.2. Sets Z0.£; ƒ/ are the “cuts” (cross-sections) at time £ of the
solution tube (the integral funnel) to the differential inclusion (9.87) where ƒ D
fM; R.�/; H.�/g 2 = and †.�/ is the matrix solution to Riccati equation (9.86).

Each of sets Z0.£; ƒ/ is a guaranteed external estimator of XyŒ£�. This property
opens the route for parallel calculations that yield description of XyŒ£� with high
accuracy.

Remark 9.5.1. The last result of Theorem 9.5.2, together with Theorem 9.5.1,
provides a special structure of matrix functions L.�/ for these relations. Namely,
here we may set L.t/ D †.t/G0.t/H.t/G.t/, t0 � t � £, where †.�/ is defined
by (9.86) with ƒ D fM; R.�/; H.�/g varying within set =.

Note that several techniques based on using auxiliary uncertain systems under
quadratic integral constraints for various classes of system models have been
discussed in this context in [113, 140, 167].

One of these is the guaranteed state estimation problem of this chapter. Apart
from deterministic techniques in earlier lines of this section the problem may also
be solved through a stochastic scheme which ends up with results of similar type.

9.6 Information Tubes vs Stochastic Filtering Equations.
Discontinuous Measurements

The two approaches to the state estimation problem, namely the stochastic and the
set-membership filtering, may seem rather different. However it turns out that, apart
from differences, there are useful connections between the techniques of calculating
the results.

9.6.1 Set-Valued Tubes Through Stochastic Approximations

Suppose that system (9.76), (9.77) is specified as follows

Px 2 A.t/x C Q .t/; t � t0; x.t0/ 2 X 0; (9.94)

y.t/ 2 G.t/x C R .t/; (9.95)
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where (9.95) describes the measurement (observation) equation while continuous
set-valued function R .t/ W T D Œt0; t1� ! convRm reflects the unknown but
bounded noise w in the observations.

Given measurement y.t/ D yŒt �, t 2 Œt0; £�; the guaranteed state estimation
problem is to specify information sets XyŒt � and their evolution as an information
tube XyŒ�� which is to be viable relative to inclusion (9.95), when yŒt � arrives on-
line. The evolution of XyŒt � was described by relations (9.93), (9.84), (9.86) under
appropriate assumptions on Y .t/.

It is well known, however, that a conventional stochastic filtering technique for
similar linear systems subjected to stochastic Gaussian noise are given by equations
of the “Kalman filter” [108]. Our next question therefore will be to see whether
equations of the Kalman filter type could be also used to describe the deterministic
information tubes XyŒt � for the guaranteed estimation problem of the above.

This question is justified by the fact that, on the one hand, the tube XyŒt � D
Xy.t; t0; X 0/ may be described through the linear-quadratic approximations of
Sect. 9.5, while, on the other, by the well-established connections between the
Kalman filtering equations and the solutions to the linear-quadratic problem of
control.

Using solutions of the previous section, fix a triplet k.�/ D k�.�/ D
fv�.�/; w�.�/; x�

0 g with k�.�/ 2 Q .�/� .y.�/�R .�//�X 0 and consider the stochastic
differential equations

d z D .A.t/z C v�.t//dt C ¢.t/dŸ; (9.96)

dq D .G.t/z C w�.t//dt C ¢1.t/d˜; (9.97)

z.0/ D x�
0 C —; q.0/ D 0; (9.98)

where Ÿ, ˜ are standard normalized Brownian motions with continuous diffusion
matrices ¢.t/, ¢1.t/ and det.¢.t/¢ 0.t// ¤ 0 for all t 2 T , — is a Gaussian vector
with zero mean and variance M � D ¢0¢0

0.
Denoting ¢.t/¢ 0.t/ D R�.t/, ¢1.t/¢1

0.t/ D H �.t/ and treating q D q.t/ as the
available measurement we may find equations for the minimum variance estimate
z�.t/ D E.z.t/ j q.s/; t0 � s � t / (the respective “Kalman filter”).

These are

d z�.t/ D .A.t/ � †.t/G0.t/H ��1
.t/G.t//z�.t/dtC (9.99)

C†.t/G0.t/w�.t/dt C v�.t/dt; z�.t0/ D x�
0 ;

P†.t/ D A.t/†.t/ C †.t/A0.t/� (9.100)

�†.t/G0.t/H ��1
.t/G.t/†.t/ C R�.t/; †.t0/ D M �:

The estimate z�.t/ thus depends on the triplets k�.�/ and ƒ�DfM �; R�.�/;
H �.�/g2=.
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Now let us consider the set

Z�.t/ D Z�.t; ƒ�/ D
[

fz�.t/ j k�.�/ 2 Q .�/ � Y .�/ � X 0g

which, with a given realization q.t/, is the reachability set for Eq. (9.99).

Theorem 9.6.1. Assume equalities

M � D M �1; R�.t/ � R�1.t/; H �.t/ � H �1.t/ (9.101)

to be true and Y .t/ D y.t/ � R .t/, t 2 T . Also assume

q.t/ �
Z t

t0

y.£/d£: (9.102)

Then sets Z0.t; ƒ/ of Sect. 9.5 and Z�.t; ƒ�/ of this section coincide, namely,

Z0.t; ƒ/ � Z�.t; ƒ�/; t 2 T; ƒ D fM; R.�/; H.�/g:

Corollary 9.6.1. Under the assumptions of Theorem 9.6.1, the following equality
is true

XyŒ£� D
\

fZ�.£; ƒ�/ j ƒ� 2 =g: (9.103)

The proof of Theorem 9.6.1 follows from the fact that under the assumptions
of the last theorem equation (9.99), with k�.�/ 2 fQ .�/ � Y .�/ � X 0g, and
the system (9.79)–(9.81), have the same reachability sets under constraint (9.83).
Corollary 9.6.1 then follows from Theorem 9.5.1.

Remark 9.6.1. The last results describe a clear connection between solutions to
the linear-quadratic Gaussian filtering problem (the Kalman filter) and those for
deterministic guaranteed state estimation under unknown but bounded “noise”
which may satisfy not only soft integral quadratic bounds on the uncertain items
but also the non-quadratic instantaneous (hard) bounds on the unknown items.
A more detailed discussion of this approach may be found in [138].

One should recall that while the theorems discussed in Sect. 9.1 were proved
under Assumptions 8.1.1, 8.1.3, or 8.1.4, or 8.1.6, those of Sect. 9.2.1 contained
additional conditions on smoothness and convexity of the on-line continuous state
constraints, whereas those of Sects. 9.2.2 and 9.2.3, allowed Y .t/ to be only
continuous in time t . A certain relaxation of this condition would be to demand that
y.t/ would be piecewise continuous. We shall now recall a technique of singular
perturbations for differential inclusions which will eventually allow to relax the
requirements on Y .�/, accepting state constraints, when Y .t/ is only measurable
on T .

A nonlinear filtering version of these results could be pursued through a
combination of the reasoning of Sect. 8.1 and of [14].
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9.6.2 The Singular Perturbation Approach: Discontinuous
Measurements in Continuous Time

In this section we consider linear-convex differential inclusions of type

Px 2 A.t/x C Q .t/; y.t/ � G.t/x 2 R .t/; (9.104)

with x.t0/ 2 X 0; t0 � t � £.
Here the n�n- and m�n-matrices A.t/, G.t/ are taken measurable and bounded

almost everywhere on Œt0; t1�, with set-valued maps Q W Œt0; t1� ! convRn and
R W Œt0; t1� ! convRm measurable and bounded.

Further on we consider a system of type

Px 2 A.t/x C Q .t/; L.t/ Pr 2 R .t/ � y.t/ C G.t/x; (9.105)

parameterized by functions L.�/, with

t0 � t � £; x0 D x.t0/ 2 X 0; r0 D r.t0/ 2 R 0;

and

L.�/ 2 Rm�m� Œt0; £�; Z0 D X 0 � R 0 2 convRnCm

Here Rm�m� Œt0; £� is the class of all continuous invertible matrix functions L.�/ 2
Rm�mŒt0; £�.

Denote z D fx; rg 2 Rn � Rm and zŒt � D z.t I £; t0; z0; L/ to be the solution
to (9.105) that starts at point zŒt0� D z0 D fx0; r0g. Symbol Z.�I £; t0; Z0; L/ will
now stand for the solution tube to system (9.105) with ZŒ£� D Z.£; t0; Z0; L/ D
Z.£I £; t0; Z0; L/ and Z0 2 Rn � Rm.

Let �xW denote the projection of set W 	 Rn�Rm into space Rn of x-variables.
Then the next assertion is true

Theorem 9.6.2. Under assumption �xZ0 D X 0 the following formula is true for
any £ 2 Œt0; t1�

XyŒ£� D �x

�\
fZ.£I t0; Z0; L/ j L 2 Rm�m� Œt0; £�

�
:

Set Xy.£/ � Rn therefore arrives as the intersection over all functions L.�/ 2
Rm�mŒt0; £� of the projections of sets ZŒ£� � R.nCm/�.nCm/ on the space Rn of
x-variables. The proof of the last theorem is given in detail in [158, Sect. 16], with
examples given in [174, Sect. 4.6] (see also [159, 168]).

It is clear that conditions of smoothness or continuity of Y .t/ in time are not
required in such setting.



Chapter 10
Uncertain Systems: Output Feedback Control

Abstract This chapter finalizes some results of earlier chapters for systems that
operate under set-membership uncertainty. Its aim is to emphasize a successful
application of previously described techniques to such systems. The chapter thus
gives a concise presentation of solution techniques for the problem of output feed-
back control based on available measurements under set-membership uncertainty.

Keywords Set-membership uncertainty • Bounding approach • Measurement
output • Information space • Information tube • Feedback control strategy
• Linear-convex systems • Separation theorem • Ellipsoidal techniques

This chapter gives a concise description of controlled systems that operate under
uncertainty—incomplete information on the system dynamics and uncertainty in
the system and measurement inputs due to unknown but bounded disturbances.
Considered are systems with mostly hard bounds on the uncertain items. The issue
of uncertainty is illustrated on the problem of output feedback control (OFC) for
such systems. The aim of the chapter is to demonstrate that techniques of the present
book may be successfully used in solving problems of feedback control under
imperfect knowledge of its model. A detailed discussion of feedback control under
realistic (inaccurate or incomplete) information on the system model, its on-line
dynamics and accompanying on-line measurement process is a broad topic left for
separate publication.

The basic problem here is of closed-loop target control under realistic
information. As everywhere in this book, the forthcoming results range from
theoretical issues to computational schemes. But the specifics of the derived solution
schemes lie in the combination of both approaches discussed in the previous
chapters, namely, of Hamiltonian methods in the form of dynamic programming
and of techniques taken from set-valued analysis and minmax approaches. The
overall general solution for the considered problem then appears as a combination
of two parts, which deal firstly with a finite-dimensional problem of guaranteed
state estimation and secondly—with an infinite-dimensional problem of feedback
control under set-membership uncertainty. For the first problem new types of set-
valued observers were introduced. For the second problem, which is especially
difficult to formalize and solve, the achieved solution is reduced to one of

© Springer International Publishing Switzerland 2014
A.B. Kurzhanski, P. Varaiya, Dynamics and Control of Trajectory
Tubes, Systems & Control: Foundations & Applications 85,
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finite-dimensions which facilitates calculation. For systems with linear structure and
convex constraints the solution is more precise. Here the computational procedure
is based on new developments in ellipsoidal calculus, which proved to be effective
and allowed to design complemental software, producing complete solutions with
useful examples (see [133]). Calculations for the nonlinear case are achieved by
using specifics of the problem in combination with comparison principles that allow
to relax the original equations or variational inequalities of the Hamilton–Jacobi
type to simpler, finite-dimensional relations.

10.1 The Problem of OFC

One key problem in realistic control synthesis is to design closed-loop feedback
control laws based on available on-line observations under noisy measurements.
One must assess how the level of uncertainty and the available incomplete, but
realistic information affect the values of the achievable cost, optimizing guaranteed
performance. Related problems of measurement output control were well developed
in a stochastic setting, [4, 18, 59, 122, 273]. However, many applications require
solving this problem under other information conditions that need not rely on prob-
abilistic models but require other approaches which are the topics of this book. Such
approaches naturally require other techniques and new formalization schemes.
This may include other types of observers and other models for disturbances. The
solutions to such problems were investigated mostly within the H1 approach,
[13, 18, 98], with soft-type integral costs, while problems with hard bounds on the
noise, in the set-valued perspective, were less developed [147, 189].

The following text begins with a rigorous problem formulation and emphasizes
the crucial role of properly selecting the on-line generalized state of the system
in the form of information states, described by either value functions for related
problems of optimization, or by information sets—the outputs of related set-valued
observers. Further developed is the detailed overall solution scheme, which is a
combination of two: a finite-dimensional problem of guaranteed state estimation
and an infinite-dimensional problem of feedback control under set-membership
uncertainty. Both problem solutions are described in detail. The second one is
especially difficult to formalize and solve. The novelty of the developed solution is
that it indicates how to reduce the second problem to finite-dimensions, facilitating
calculation. An optimization scheme is then introduced for the overall problem.

A further important aspect is to indicate how to solve the problems completely
(“to the end”), through appropriate computation. For systems with linear structure
and convex constraints a computational procedure is indicated, based on ellipsoidal
calculus, which proved to be effective for many problems and is used with comple-
mentary software which is applicable to systems of large dimensions (see ellipsoidal
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toolbox [132]). The procedure also allows one to apply polyhedral techniques,
[114, 115, 117]. For the nonlinear case calculations may be facilitated by using
the specifics of the problem and applying modifications of the earlier suggested
comparison principles that allow to relax the original equations or variational
inequalities of the Hamilton–Jacobi type to simpler relations (see Sects. 5.1 and 7.1
of this book and also [149]).1

The results of this chapter follow the lines of [189].

10.2 The System: The Generalized State and the Rigorous
Problem Formulation

The problem of OFC under set-membership noise is formulated for the next control
system model and available information.

The System Model. Given is an n-dimensional differential equation

Px D f1.t; x; u/ C f2.t; x; v/; x.t0/ D x0; t 2 Œt0; ª�; (10.1)

where the functions f1.t; x; u/, f2.t; x; v/ are continuous with respect to the triplets
of independent variables and such that their sum satisfies standard conditions of
uniqueness and extendability of solutions throughout the interval Œt0; ª�, for any
initial condition x0 2 Rn, any admissible, bounded, closed-loop control strategies

u D U.t; �/ 2 P .t/; (10.2)

and uncertain disturbances v.t/ from appropriate classes indicated below. Here,
as before, P .t/ 2 compRp is a set-valued function, with compact values,
continuous in the Hausdorff metric. And as before, the system trajectory is denoted
xŒt � D x.t; t0; x0/.

The Measurement Equation and the Noise. The observations of vector x are due
to measurement equation

y.t/ D g.t; x.t// C Ÿ.t/; (10.3)

where g.t; x/ is continuous in both variables, y.t/ 2 Rr is the measurement, and
Ÿ.t/ is the unknown noise.

The Uncertain Items—starting position x.t0/ D x0 and right-continuous input
disturbances v.t/; Ÿ.t/, are taken as either

1 Effective results may be reached for some classes of problems, especially those on an infinite
horizon, by Lyapunov-type methods [198].
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(a) unknown but bounded, with given bounds

x0 2 X 0; v 2 Q .t/; Ÿ 2 R .t/; (10.4)

where X 0 is compact, while Q .t/; R .t/ are set-valued functions with properties
similar to P .t/; or

(b) unknown, with bounds also unknown.

The present discussion further deals with case (a). However, it is also applicable
to case (b) within a unified framework that combines H1 approaches with set-
valued interpretations [14, 103]. The aim of the control is to steer the system to
a prespecified neighborhood of a given target set M , whatever are the unknown
but bounded uncertain items. This is to be done in fixed time by feedback control
strategy U.t; �/ on the basis of available information:

– the system and measurement model: Eqs. (10.1) and (10.3),
– the given constraints on control u and uncertain inputs x0; v.t/; Ÿ.t/: inclu-

sions (10.2), (10.4),
– the starting position ft0; X 0g,
– the available measurement y.t/ D yŒt � (arrives on-line).

Sets X 0; M are assumed convex and compact. The feedback control strategy
U.t; �/ depends on time “t” and on the generalized state XyŒt � or V.t; �/ described
further within a precise setting of the problem.

For a precise problem formulation we first need to define a new (generalized)
state of the system. Namely, what should it be now, that the on-line measurement
information is incomplete and corrupted by set-membership noise?

To propagate earlier schemes to OFC the new state may be taken as

(a) ft; yt .�; t0/g; where yt .�; t0/ D fy.t C ¢/ j ¢ 2 Œt0 � t; 0�g is the memorized
measurement. This memorization is done through observers and filters.

(b) ft; XyŒt �g—the information set of states consistent with measurements yt .�; t0/

and constraints (10.4) on the uncertain items

—t .�; t0/ D fx0; vt .�; t0/; Ÿt .�; t0/g:
The single-valued trajectories of the classical case should then be substituted by
set-valued information tubes, introduced in Chap. 9

(c) ft; V .t; �/g—the information state, which is the value function V.t; x/—the
solution to an appropriate HJB (Hamilton–Jacobi–Bellman) PDE equation,
designed such that

XyŒt � D fx W V.t; x/ � ’g; ’ � 0

is the level set of V.t; x/.

The overall basic problem of OFC now reads as follows.
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Problem OFC. Specify a control strategy U.t; �/ 	 P .t/ as

U.t; �/ D U.t; XyŒt �/ or U.t; �/ D U.t; V .t; �//;

dependent on the state ft; XyŒt �g or ft; V .t; �/g, which for any starting position
ft0; X 0g; t0 < ª; would bring xŒª� D x.ª; t0; x0/ to a preassigned neighborhood
M” of the given target set M ; at given time t D ª, whatever be the uncertain items
—t .�; t0/; constrained by (10.4). Here M” D M C ”BM .0/; where BM .0/ D fx W
hx; Mxi � 1g; M D M 0 > 0.

Note that control strategy U is a functional of the information set (or information
state) that depends on measurement y.t; �/ and given constraints on the uncertain
items. The notion of information sets and information states, as well as the
description of their properties, are the subject of a separate theory of guaranteed
estimation treated in Chap. 9.

Depending on what we use—the information set or the information state, there
are two basic interconnected approaches, both considered in Chap. 9. The first one
is to use the information state V.t; x/; calculated as the value function for a
Dynamic Programming problem of minimaximizing a functional borrowed from
H1 theory and producing solutions in the form of control strategies, as functionals
u D U.t; V .t; �// (see [18, 27, 103, 123]). The second is to use the informa-
tion set described through set-valued calculus in terms of differential inclusions,
involving further the notion of invariant sets and calculating set-valued strategies
u D U.t; XyŒt �/ through the “aiming rule” and its analogies (see related work at
[6,122,136,137,153,204]). We will use both approaches within a unified framework.

10.3 The Overall Solution Scheme: General Case

Suppose that on the interval Œt0; £� the control u D uŒt � and the observation y D yŒt �

have been realized and are therefore known.2

Problem OFC will be to find

V .t0; X 0
y / D min

U
max
—.�/ fd 2.x.ª/; M”/ j x.t0/ 2 X 0

y g; X 0
y D X 0 \ Y .t0/;

(10.5)
under constraints (hard bounds) (10.1)–(10.4) in the class of controls u D
U.t; Vy/ D U.t; Xy/.

2Here and in the sequel square brackets in u D uŒt �; y D yŒt � mean that for the interval under
consideration these functions are known, otherwise we use round brackets.
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Under such hard bounds this will be achieved through functionals

V .t0; X 0/ D min
uŒ�� max

—Œ��

�
min

u
max
—.�/

�
� d 2.x.£/; XyŒ£�/ (10.6)

�
Z ª

£

d 2.y.t/ � g.t; x.t//; R .t//dt C d 2.x.ª/; M /

��

where

XyŒ£� D Xy.£ j y£Œ�; t0�; u D u£Œ�; t0�/ D fx W �V�.£; x j Œy; u�/ � 0g; (10.7)

and

V�.£; x j Œy; u�/ D max
—

f�d 2.x.t0/; X 0/� (10.8)

�
Z £

t0

d 2.yŒt � � g.t; x.t//; R .t//dt j x.£/ D x; u D u£Œ�; t0�g

so that �V�.£; x j Œy; u�/ D d 2.x.£/; XyŒ£�/.
Here x.t0/; x.ª/ are the two ends of the system trajectory x.t/; while, as before,

—ª.�; t0/ is the triplet of uncertain items, bounded by (10.1)–(10.4).
Combining the above into one functional, we get

V .t0; X 0/ D min
uŒ�� max

yŒ��

�
min

u
max

—

�
V�.£; xŒ£� j Œy; u�/ (10.9)

�
Z ª

£

d 2.y.t/ � g.t; x.t//; R .t//dt C d 2.x.ª/; M /

��

Note that on the interval Œt0; £�; where the realization of the measurement noise
is ŸŒt � D yŒt � � g.t; x.t//; the triplet — D —£.�; t0/ is constrained by inclusions
x0 2 X 0; v.t/ 2 Q.t/; yŒt � � g.t; x.t/ 2 R .t/; with observation yŒt � and control
uŒt � being known (such triplets are denoted as —Œ��), while on the interval .£; ª�; the
measurements y.t/ are unknown, so that — D —ª.�; £/ has to be bounded only by
XyŒ£�; Q .t/; R .t/; t � £; to satisfy all the possible future realizations of y.t/.
Then, on the interval .£; ª�; functional (10.6) has to be maximized over all such
—ª.�; £/ and minimized over u 2 P .t/ in the class of strategies described further.

One may now observe that the overall Problem OFC may be separated into
two, namely, Problem E on guaranteed estimation (calculation of the information
state V.t; x/ D �V�.t; x/), solved within the interval Œt0; £� and Problem C of
feedback control (finding strategy U.t; V .t; �// as a functional of the information
state), solved within the interval .£; ª�. Note that V.£; x/ depends on the available
measurement y£Œ�; t0� D y.t C ¢/; ¢ 2 Œt0 � £; 0�; and that its role is similar
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to sufficient statistics in stochastic control. Also note that the control strategy
U.t; V .t; �// has to be selected within a class of functionals that ensure existence
and extendability of solutions to Eq. (10.1) with u D U.t; V .t; �//. Therefore of
importance will also be a third goal which is to achieve a proper mathematical
formalization for the obtained results, ensuring the existence of solutions to the basic
Eq. (10.1) under strategies U.t; V .t; �// obtained in the space of information states.

In the previous paragraph the information state V.t; x/ may be substituted by
information set XyŒt � D Xy.t; �/ due to the following: with set-valued hard bounds
on fx0; v; Ÿg being given, it turns out that

XyŒt � D fx W V.t; x/ � 0g; (10.10)

therefore the information set X Œt � would be the level set for the information state
V.t; �/. This property thus justifies the fact that the generalized state is selected,
as indicated above, either as a function (the information state, which is the value
function V.t; �/ for an appropriate problem of Dynamic Programming) or as a
set (the information set). The dynamics of the overall OFC problem may be thus
described by either PDEs of the HJBI type (which give the dynamics of V.t; �/
and its level sets ) or, for example, through a related integral funnel equation—an
evolution equation with set-valued solution which gives the dynamics of XyŒt � (see
Chaps. 8, 9, and also [158]). We further rely on either of these two definitions. The
fact is that to achieve effective solutions with natural geometrical interpretations it
appears necessary to combine both approaches. This allows us to work out a unified
vision of the general problem and open new routes to a detailed solution of specific
Problem OFC, especially with hard bounds and working within computation in
finite-dimensional space. Conditions for the latter to suffice, as given later, also
allow us to avoid the common restriction that u; v should satisfy certain matching
conditions. It is thus possible to solve the linear case completely and to apply
new computation methods to systems with set-valued solutions, enabling effective
computer animation of solution examples. Recall that under feedback control the
original linear system becomes nonlinear. We now describe the solution schemes
for Problems E and C the subproblems of the overall Problem OFC.

10.4 Guaranteed State Estimation Revisited: Information
Sets and Information States

We consider this Problem E in two versions: E and E0, dealing with continuous
measurements.

Problem E. Given are system (10.1) with measurement Eq. (10.3). Also given are
starting position ft0; X 0g, available measurement yŒt �, and realization of control
u D uŒt �; t 2 Œt0; £�. One is to specify the information set XyŒ£� D Xy.£; �/ of
all states x.£/, generated by system (10.1), (10.3), that are consistent with given
realizations uŒt �; yŒt � and on-line state constraints (10.4).
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This definition of information set XyŒ£� is similar to Definition 9.1.1, but the
difference lies in the system Eq. (10.1), where also present is the realization uŒt �

known within Œt0; £/.
Therefore, the generalized state of the system may be taken as ft; XyŒt �g.

An equivalent definition of such a state may be also served by the triple
f£; y£.�; t0/; u£.�/g. Then the passage from y£.�; t0/ to XyŒ£� (now with given
u£.�/, is achieved through set-valued observers described in Chap. 9, Sects. 9.2
and 9.6 (see also [137, 151, 158]).

To solve basic problems E and C one should start by describing the evolution
of information sets XyŒ£� D Xy.£; �/ in time, which now is also influenced by the
selected control u. Here we first explain this process through differential inclusions,
along the lines of Sects. 8.2, 9.2 and 9.6. Denote

Y .t/ D fx W y.t/ � g.t; x/ 2 R .t/g; Yª.�; £/ D fY .t/; t 2 Œ£; ª�g:
We further assume Y .t/ to be closed and convex-valued. Let D be a convex compact
domain in Rn sufficiently large to include projections on Rn of all possible set-
valued trajectory tubes of system (10.1), (10.4) and all possible starting sets and
target sets that may occur under our considerations. Then set YD.t/ D Y .t/ \ D
will be convex and compact.

Assumption 10.4.1. Set-valued function YD.t/ satisfies the Lipschitz condition:

h.YD.t/; YD.t 0// � œy jt 00 � t 0j: (10.11)

Consider system (10.1), (10.4), with functions f1; f2; g continuously differen-
tiable in ft; xg. Also assume given are the realizations of the control u D uŒt � and
measurement y D yŒt �; t 2 Œt0; £�. Denote

F .t; x; uŒt �/ D f1.t; x; uŒt �/ C f2.t; x; Q .t//; f2.t; x; Q / D [ff2.t; x; v/ j v 2 Q .t/g:

Then the information set XyŒ£� will be the cross-section (cut) at time £ of the solution
tube (the “information tube”) XyŒt � D Xy.t; t0; X 0/ for the differential inclusion
(DI)

Px 2 F .t; x; uŒt �/; x.t0/ 2 X 0; (10.12)

under state constraint x 2 Y Œt �; t 2 Œt0; £�.3 In the coming propositions we presume
Q .t/ 2 convRq; R .t/ 2 convRr .

According to Lemma 8.2.3 and Theorem 8.2.3 (see also [158], Sect. 10) the
information tube XyŒ£; �� D fXyŒt �; t 2 Œt0; £�g will be the solution tube to the
differential inclusion (DI):

Px 2
\

fF .t; x; uŒt �/ C L.�yŒt � C g.t; x/ C R .t// j L 2 Rn�r g; x.t0/ 2 X 0; t 2 Œt0; £�;

3For Y .t/ generated by given yŒt � we use notation Y D Y Œt � with square brackets.
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where L may be either constant matrices of dimension n � r or continuously
differentiable n � r matrix functions L.t; x/; L.�; �/ 2 Cn�r

1 Œt0; £� or L.t/; L.�/ 2
Cn�r

1 Œt0; £�.
Taking the DI

Pz 2 F .t; z; uŒt �/ C L.t; z/.�yŒt � C g.t; z/ C R .t//; z.t0/ 2 X 0; (10.13)

denote its solution tube, emanating from X 0; as ZuŒt � D Zu.t; t0; X 0; L.�; �//.
Theorem 10.4.1. Under Assumption 10.4.1 the next inclusion will be true:

XyŒ£� D Xy.£; t0; X 0/ 	
\

fZu.t; t0; X 0; L/ j L D L.�; �/ 2 Cn�r
1 Œt0; £�g

	
\

fZu.t; t0; X 0; L/ j L D L.�/ 2 Cn�r
1 Œt0; £�g: (10.14)

Corollary 10.4.1. For a linear system with

Px 2 A.t/x C B.t/uŒt � C C.t/Q .t/; yŒt � 2 G.t/x C R .t/; x.t0/ 2 X 0;

and with convex, compact X 0; Q .t/; R .t/ the DI (10.13) turns into

Pz 2 A.t/x CB.t/uŒt �CC.t/Q .t/CL.t/.�yŒt �CG.t/zCR .t//; z0 D z.t0/ 2 X 0;

(10.15)

and inclusion (10.14) into an equality

XyŒ£� D Xy.£; t0; X 0/ D
\

fZu.t; t0; X 0; L/ j L D L.�/ 2 Cn�r
1 Œt0; £�g:

(10.16)

The last formula will be used below to obtain more detailed solutions under system
linearity. DIs (10.13) and (10.15), taken under given u£.�/; are actually the related
set-valued observers.

Assumption 10.4.1 implies that measurement y.t/ is continuous. This require-
ment may be relaxed to piecewise continuous measurements y.t/ D yŒt � by
applying another set-valued observer generated due to the relaxed set-valued funnel
equation of Sect. 8.1.5. For solution tube XyŒ£; �� of system (10.12), under x 2 Y Œt �

the set-valued function Y .t/ may then be taken as Hausdorff upper semi-continuous.
With uŒt �; yŒt � known, the tube XyŒt � then satisfies the evolution equation of the
funnel type, with X Œt0� D X 0

T
Y Œt0� :

lim
¢!0C0

¢�1hC
�

X Œt C ¢�;
[

fx C ¢F .t; x; uŒt �/ j x 2 X Œt �
\

Y Œt C 0�g
�

D 0:

(10.17)

Passing to the Hamiltonian approach, the dynamics of information sets XyŒ£�

may be now calculated by solving the alternative problem E0, formulated in terms
of value functions.
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Problem E0. Given are the starting position ft0; X 0g, the available measurements
y£Œ�; t0�, and the control realization uŒt �; t 2 Œt0; £/. One is to specify

�V.£; x/ D max
v

f�d 2.xŒt0�; X 0/�
Z £

t0

d 2.yŒt ��g.t; x/; R .t//dt j xŒ£� D x 2 Rn;

(10.18)
v.t/ 2 Q .t/; t 2 Œt0; £�g;

due to system (10.1).
Here xŒt � D x.t; £; x/; t � £ stands for the backward trajectory, emanating from

position f£; xg. Function V.£; x/ D V.£; x j V.t0; �/; y£Œ�; t0�; u£Œ�; t0�/ turns out to
be precisely the information state of system (10.1), (10.3) introduced in the above.

Remark 10.4.1. If one presents functional (10.6) as the sum of two parts: the first
defined for Œt0; £�, and the second, defined for .£; ª�, then (10.18) will coincide with
the first part, reflecting the problem of state estimation, namely, the calculation of
the on-line information state.

Using function V.£; �/ is convenient for describing the evolution of information
states in differential form, since V.£; �/ may be represented in more conventional
terms of partial differential equations. Note that in (10.7) we actually have an
equality X Œ£� D fx W V.£; x/ � 0g. However, we prefer to write an inequality
in (10.7), since this will also allow us to describe the neighborhoods of XyŒ£� as

X ©
y D fx W V.£; x/ � ©g; (10.19)

without introducing new notation.
Function V.t; x/ satisfies an HJB-type equation for time t 2 Œt0; £�:

@V

@t
D � max

v

� �
@V

@x
; f1.t; x; u�Œt �/ C f2.t; x; v/

	

�d 2.yŒt � � g.t; x/; R .t//

ˇ̌
ˇ̌ v.t/ 2 Q .t/

�
; (10.20)

under boundary condition

V.t0; x/ D d 2.x; X 0/: (10.21)

V.t; x/ may be non-smooth, hence the solution to Eq. (10.20) under condi-
tion (10.21) may not be classical, but must be redefined in a generalized sense,
for example, as a “viscosity” or “minmax” solution [48, 50, 80, 247].

The existence of a generalized solution to Eq. (10.20), (10.21) is necessary and
sufficient for the existence of solution to Problem E0. In this case the mapping
V.t; �/ D V.t; �jV.t0; �// satisfies the evolution equation of type

Vt .t; �/ D ˆ.t; Vx.t; �/; � j uŒt �; yŒt �/; (10.22)
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whose right-hand side is identical to (10.20). In other words, (10.22) is an “equation
of motion” for the information state V.t; �/. The evolution of V.t; �/’s level set X Œt �

(see (10.18)) is therefore implicitly also described by this equation.
A fairly broad case is when V.£; x/ are continuous in all variables, with

nonempty compact zero level-sets X Œ£� D fx W V.£; x/ � 0g 6D ;. These are neces-
sarily those that solve Problem OFC for (10.1), (10.3) being linear, with continuous
coefficients and convex constraints. The indicated class of functions V.£; �/ will be
denoted as KV and treated as a metric space with metric hV .V 0.£; �/; V 00.£; �// D
h.X 0Œ£�; X 00Œ£�/; where X Œ£� D fx W V.£; x/ � 0g and h.X 0; X 00/ is the Hausdorff
metric. The variety of closed compact sets X Œ£� may be also considered as a metric
space KX , equivalent to KV , with metric h.X 0Œ£�; X 00Œ£�/. A discussion of possible
related metrics is given in monograph [98, Chap. 4, Appendix C.5].

Having specified the spaces of information states and sets (also referred to as
the respective information space), we may proceed with the problem of feedback
control itself. The difficulty is that we will now have a problem in the information
space, with states taken as either functions V.t; �/ or sets X .t; �/. We therefore return
to Eq. (10.22), observing, that for t > £ the realization y.t/ is unknown in advance,
arriving on-line, while for t � £ the control, taken, for example in the form of
u D u.t; V .t; �//; is to be selected due to this equation treated in the space of states
V.t; �/. Further on, we indicate, when possible, the routes for overcoming these scary
difficulties through simpler techniques.

10.5 Feedback Control in the Information Space

As indicated in the above, the information space may be defined in either the space
of information sets or the space of value functions—the information states. We first
begin with the space of information sets.

10.5.1 Control of Information Tubes

The feedback control problem in the space of information sets reads as follows.

Problem C. Given starting position f£; XyŒ£�g; target set M and number ” > 0;

specify a control strategy u D u.t; X /; t 2 Œt0; £� that steers system (10.20), (10.21)
under u D u.t; X / into a ”-neighborhood M” of given terminal target set M ;

whatever be the function

yª.�; £/ 2 Yª.�; £/ D fy.t/ W —ª.�; £/ 2 Zª.�; £/g;

and the related uncertain items —ª.�; £/ that generated yª.�; £/.
Here Zª.�; £/ D Sf—ª.�; £/ W x 2 XyŒ£�; v.t/ 2 Q.t/; Ÿ.t/ 2 R .t/; t 2 Œ£; ª�g.
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Problem Copt . Among values ” > 0; for which Problem C is solvable, find
smallest ”0.4

With ” > 0 given, Problem C is solvable if and only if XyŒ£� belongs to
W Œ£� 6D ;, that is the set of subsets X£ � Rn for which this problem with starting
position f£; XyŒ£� D X£g, does have a solution. Further we indicate that W Œ£� is
understood to be weakly invariant relative to target set M” .

Similarly, but for the information space of functions, we have the next problem.5

Problem Cv. Find value function

V .£; V .£; �// D min
u

max
y

max
x;v

�
� V.£; x/ �

Z ª

£

d 2.y.t/ � g.t; x.t//; R .t//dtC

C d 2.xŒª�; M”/

ˇ̌
ˇ̌u 2 U; y.�/ 2 Yª.�; £/; v.�/ 2 Qª.�; £/; x 2 X Œ£�

�
; (10.23)

with X Œ£� D fx W V.£; x/ � 0; V .£; �/ 2 KV g:
Here the minimum is taken in the class U of feedback strategies u D u.t; V /,

described below. The maximum is taken over all y.�/ 2 Yª.�; £/ D fY .ª C ¢/ j ¢ 2
Œ£ � ª; 0�g described above, and further, over all x 2 X Œ£�; Qª.�; £/ D fv.t/ 2
Q .t/; t 2 Œ£; ª�g.

Functional (10.23) represents the second part of (10.6), which defines the overall
control process. With £ D ª it must ensure the boundary condition

V .ª; V .ª; �// D max
x

fd 2.x; M”/ j V.ª; x/ � 0g: (10.24)

Number ”2 D V .ª; V .ª; �// is the square of “size” ” of the neighborhood
M” D M C ”B.0/ which at time ª entirely includes X Œª�, so that X Œª� 	 M” .
Functional V .£; V .£; �// is defined on the product space RC � KV , where RC D
Œt0; 1/. Note that in (10.23) the operations maxy; maxx;v are interchangeable.
After this interchange one may observe that for every y.�/ 2 Yª.�; £/ the maxx;v

results in d 2.y.t/ � g.t; x.t//; R .t// � 0. This shows that in (10.23) operations
minu maxy maxx;v reduce to just minu maxx;v.

Value function V .£; V .£; �// satisfies the generalized “backward” equation of the
HJBI type, which is well known in dynamic games with complete information6 and
may be formally written as

min
u

max
v

�
dV .£; V .£; �//

d£

ˇ̌
ˇ̌ u 2 P .£/; v 2 Q .£/

�
D 0 (10.25)

4Note that if for ” D 0 Problem C is not solvable, then ”0 > 0:

5Here and in (10.6) we use equivalent notations V .£; V .£; �// and V .£; X Œ£�/; since X Œ£� is the
zero-level set for V.£; �/.
6 See [18] and [123] where this is done in finite-dimensional space.
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where dV .£; V .£; �//=d£ is the total derivative of functional V .t; V .t; �// due to
evolution equation (10.20), (10.21), or (10.22), which is the same. Equation (10.22)
may have a smooth solution, when the total derivative exists in the strong or weak
sense and the equation holds everywhere. Otherwise it has to be dealt with in terms
of generalized solutions, as mentioned above.

The solution strategy should then be formally determined through minimization
over u in (10.25), as u0 D u0.t; V .t; �// 	 P .t/. Substituting this into (10.20),
instead of uŒt � with y.t/ instead of yŒt �; we have

Vt C max
v

˚
Vx; f1.t; x; u0.t; V .t; �/// C f2.t; x; v/

�ˇ̌
v 2 Q .t/

��

� d 2.y.t/ � g.t; x/; R .t// D 0 (10.26)

The last relation may be treated as an evolution equation in the metric space
KV of functions fV.t; �/g. The “trajectories” V Œt � D V.t; �/, issued at time t0
from V.t0; �/ D d 2.x; X 0/, may then be interpreted as “constructive motions”
V.t; �I u0.t; �//; that arrive as a result of limit transition from infinite-dimensional
analogies of Euler broken lines, constructed under all possible partitions of the
interval Œt0; ª�, by selecting piecewise-constant realizations uŒt � 2 P .t/ (see [123],
p. 11). Another option could be to treat fV.t; �/g as a generalized (viscosity) solution
in infinite-dimensional space KV (see [98]).

Being based on dynamic programming, the overall Problem OFC allows to
consider linked solutions of problems E and C, where E is finite-dimensional, while
C is infinite-dimensional. In the linear case, as we shall see, these solutions are even
independent and may be separated. Such a scheme produces a good insight into the
problem and its complete solution. But it is difficult to calculate. However, once we
need to solve concrete problems, our interest is in computation schemes feasible for
applications and such that would allow procedures that do not go beyond finite-
dimensional dynamics with computational burden not greatly above the one for
problems with complete information.

10.5.2 The Solution Scheme for Problem C

As indicated above, the solution to Problem OFC is given through two types of
HJB, HJBI equations (see (10.20), (10.25))—one for state estimation and one for
feedback control. However, what we actually need here are not the value functions,
but only their level sets. Hence, instead of directly solving the infinite-dimensional
equation (10.25), we will use the notion of invariant sets (or backward reachability
sets) relative to target set M” . Continuing the previous subsection we deal with the
space of information sets. But to calculate them we shall use relations derived in the
space of information states. We follow the scheme below.

Formally, the set WV Œ£� D fV.£; �/ W V .£; V .£; �// � 0g that we need is the
(weakly) invariant set defined as follows.
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Definition 10.5.1. (a) Set WV Œ£�; weakly invariant relative to target set M” , is the
union of value functions V.£; �/ (in space KV ) for each of which Problem C is
solvable from initial position f£; XyŒ£�g, with XyŒ£� D fx W V.£; x/ � 0g.

Multi-valued function WV Œt �; t 2 Œ£; ª� is the solvability tube in KV (an
infinite-dimensional analogy of the “Krasovski bridge”) for Problem C.

(b) Set W Œ£� weakly invariant relative to target set M” , is the union ( in space KX )
of compact sets X D X Œ£� for each of which Problem C is solvable from initial
position f£; X Œ£�g.

Set-valued function W Œt �; t 2 Œ£; ª� is the solvability tube in KX (another
infinite-dimensional analogy of “Krasovski bridge,” equivalent to case (a)).

Combining alternative descriptions in terms of value functions with those given
through set-valued calculus, we now pass from space KV to KX ; applying to
Problem C an infinite-dimensional modification of the rule of extremal aiming
towards weakly invariant sets W Œ£� (see finite-dimensional version in [123]). With
on-line position f£; X Œ£�g given, we now have to calculate the Hausdorff semi-
distance HC.XyŒ£�; W Œ£�/ between the actual state XyŒ£� and the solvability set
W Œ£�, taken in the metric of space KX ; and arriving at

VH .£; XyŒ£�/ D HC.XyŒ£�; W Œ£�/;

HC.X Œ£�; W Œ£�/ D inffinf
©

f© W X£ C ©B.0/ � X Œ£�g j X£ 2 W Œ£�g

where the first (external) infimum is to be taken over all X£ 2 W Œ£�. (This Hausdorff
semi-distance is similar to hC.X 0; X 00/ in Rn which was defined earlier.)

Then the solution to Problem C would be

U 0.£; XyŒ£�/ D fu W d.exp.�2œ£/VH .£; XyŒ£�//=d£ ju � 0 j u 2 P .£/g:
(10.27)

Namely the union of controls that allow a non-positive derivative in (10.27) would
be the desired solution. Here œ is the Lipschitz constant for (10.1), uniform in
t; x; u; v.

This is an infinite-dimensional problem, which in the general case in not simple.
However, the solution turns out to be simpler than may be expected in that it may
suffice to consider instead of VH .£; XyŒ£�/ the value

Vh.£; XyŒ£�/ D hC.XyŒ£�; WŒ£�/ D minf© > 0 W XyŒ£� � WŒ£� C ©B.0/g;

where

WŒ£� D
[�[

fx W x 2 X£g
ˇ̌
ˇ̌ X£ 2 W Œ£�

�

is a set in finite-dimensional space Rn.
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The next proposition is true with set WŒ£� being convex.

Theorem 10.5.1. With set WŒ£� 2 convRn the Hausdorff semi-distances given by
HC.XyŒ£�; W Œ£�/ and hC.XyŒ£�; WŒ£�/ are equal.

The last relation is useful in the linear case with convex compact constraints
where both XyŒ£�; WŒ£� turn out to be convex and compact.

Then, since WŒ£� coincides with the backward reachability set for system
(10.1), (10.4) without additional state constraint (10.3), this set WŒ£� will be the
level set for the solution of a finite-dimensional HJBI equation.

Relation (10.27) now reduces to

U 0.£; XyŒ£�/ D fu W d.exp.�2œ£/h2C.X Œ£�; WŒ£�//=d£ ju � 0

ˇ̌
ˇ̌ u 2 P .£/g:

(10.28)

Theorem 10.5.2. Under conditions of Theorem 10.5.1 the control solution
U 0.£; X Œ£�/ to Problem C is given by relation (10.28).

We thus have two types of control solutions: u0.t; V .t; �// and U.t; XyŒt �/ which
have to be realized through related equations or differential inclusions similar
to (10.26), according to the specific definitions of their solutions for each control
type.

10.5.3 From Problem C to Problem Copt

The previous results described solution schemes that ensure inclusion X Œª� 	 M”;

whatever be the uncertain items —.�/. Here M” is the guaranteed neighborhood of
the target set. The final problem is now to minimize this neighborhood M” under
uncertainty and output feedback. Then we need to solve the following subproblem.

Solving Problem Copt of Minimizing the Guaranteed Solution

Consider minimax problem (10.6) with £ D t0 and starting position ft0; X 0g,
where M is substituted for M” and W Œ£�; V .£; �/ for W”Œ£�; V”.£; �/. Then the
solution to Problem C will be to find the smallest ” D ”0 � 0 among those that
ensure X 0 	 W”Œt0� D W”Œt0�:

Here V”.t0; X 0/ will depend on the boundary condition (10.24), so that W”Œt0� D
fW W V”.t0; W / � 0g D W”Œt0�. Introducing

¡.”; t0/ D H”.X 0; W”Œt0�/ D h”.X 0; W”Œt0�/;

we reduce the problem of optimization to calculating

min
”

¡.”; t0/ D ¡.”0; t0/ D ¡0.t0/:
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The final step is to solve Problem C for ” D ”0 by finding the closed-loop
control strategy U 0.t; Xy/ that for the optimal neighborhood M 0 D M”0 of the
target set M , ensures the inclusion X Œª� 	 M 0, whatever be the unknown but
bounded uncertain items —.�/.
Remark 10.5.1. The uncertain items may deviate from their maximizing “worst
case”) values. This allows us to improve the final result by recalculating (rebooting)
the solution and decreasing ”0 by diminishing sets M”; W”Œt � beyond their initial
sizes.

Remark 10.5.2. Problem Copt may be also solved by integrating the HJB–HJBI
equations (10.20)–(10.26), but this direct approach appears to impose a far greater
computational burden than the suggested schemes. It also requires appropriate
interpretations of solution classes for these equations.

The ultimate aim of treating Problem OFC is to solve it completely through adequate
computation. We shall now indicate some relaxation schemes for finding XyŒ£� and
WŒ£� through related computation methods, restricting ourselves to linear systems.
The nonlinear case may be approached through the comparison principle of Chap. 5,
Sects. 5.1–5.3.

10.6 More Detailed Solution: Linear Systems

We shall now discuss how far can the OFC problem be solved for linear systems
of type

Px D A.t/x C B.t/u C C.t/v; (10.29)

y.t/ D G.t/x C Ÿ; (10.30)

under continuous coefficients and convex compact constraints u 2 P .t/ and (10.4).

10.6.1 The “Linear-Convex” Solution

As indicated in the previous section, we must find the feedback control u0.£; XyŒ£�/,
having calculated XyŒ£� and WŒ£�; where in the linear case both sets are convex
and compact. These sets may be expressed explicitly, through duality methods of
convex analysis, as the level sets of related value functions similarly to formulas of
Chap. 2, Sect. 2.4 and Chap. 3. And it would also allow us to calculate derivatives
of such value functions. Here, however, we indicate another scheme for such
calculations by using related evolution equations of the funnel type introduced in
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Chap. 2, Sect. 2.3.1 and Chap. 8, Sect. 8.1.3. This move brings us, using notation
hC.X£; WŒ£�/ D minf© > 0 W X£ 2 WŒ£� C ©B.0/g; to problem

Vh.£; XyŒ£�/ D maxf¡.l j G.ª; £/XyŒ£�/ � ¡.l j G.ª; £/WŒ£�/ j < l; l >� 1g:
(10.31)

Then, following (10.28) for VH D Vh, we find the overall control solution u0.
Hence, in order to calculate u0 we first need to calculate the total derivative of

Vh.£; XyŒ£�/ and ensure that it is non-positive under control u0. Related evolution
equations for XyŒt �; WŒt � may be written as

lim
¢!0C0

¢�1hC.XyŒt C¢�; .I C¢A.t//.XyŒt �\Y .t//C¢B.t/u.t/C¢C.t/Q .t// D 0;

(10.32)

lim
¢!0C0

¢�1h.WŒt � ¢� C ¢C.t/Q .t/; .I � ¢A.t//WŒt � C ¢B.t/P .t// D 0;

(10.33)

with boundary conditions XyŒt0� D X 0; WŒª� D M” . For the first equation we use
the unique inclusion maximal solution, for the second we use the ordinary solution,
which is always unique.

Denote the unique maximizer in (10.31) as l0. We have

dVh.t; XyŒt �/=dt D d¡.l0 j G.ª; t/XyŒt �/=dt � d¡.l0 j G.ª; t/WŒt �/=dt:

(10.34)

Calculating along the lines of Sect. 8.3, we get

d¡.l0 j G.ª; t/XyŒt �/=dt � hl0; G.ª; t/B.t/ui C ¡.l0 jG.ª; t/C.t/Q .t//;

d¡.l0 j G.ª; t/WŒt �/=dt D �¡.�l0 j G.ª; t/B.t/P .t//C¡.l0 j G.ª; t/C.t/Q .t//:

Substituting these derivatives into (10.34) we come to the next statement.

Theorem 10.6.1. The total derivative

dVh.t; XyŒt �/=dt � hl0; G.ª; t/B.t/ui C ¡.�l0 j G.ª; t/B.t/P .t//: (10.35)

Finally, selecting

u0.t; Xy/ D arg maxfh�l0; G.ª; t/B.t/ui j u 2 P .t/g; (10.36)

and integrating dVh.t; XyŒt �/=dt juDu0 from t0 to ª, we ensure the next condition.

Lemma 10.6.1. The control strategy (10.36) ensures the inequality

Vh.ª; X Œª�/ � Vh.t0; XyŒt0�/ D ”;

whatever are the uncertain items fx0; v.�/; Ÿ.�/g.
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The next question is how to calculate the solutions numerically. Here we first
recall that XyŒ£�; WŒ£� may be indicated in explicit form. Then, using this
knowledge, we suggest a computational approach based on approximating convex
sets by parametrized families of ellipsoids that evolve in time, following the
approximated sets.

10.6.2 The Computable Solution: Ellipsoidal Approximations

Set XyŒ£� may be effectively calculated numerically through ellipsoidal techniques.
Using notation of Chap. 3, where an ellipsoid E.p; P / D fu W hu�p; P �1.u�p/i �
1g; P D P 0 > 0, we assume that the sets

X 0 D E.x0; X0/; P .t/ D E.p.t/; P.t//; Q .t/ D E.q.t/; Q.t//;

R .t/ D E.0; R.t//; M D E.m; M/

are ellipsoidal. Since every convex compact set may be presented as an intersection
of ellipsoids, the solutions and methods for nonellipsoidal symmetric constraints,
like parallelotopes and zonotopes, could be designed as a modification and extension
of those for ellipsoidal constraints (see Chap. 5, Sects. 5.4 and 5.5).

Then the information set XyŒ£� has an external ellipsoidal approximation XyŒ£� 	
ELŒ£� D E.xL.£/; XL.£//, where, throughout Œt0; ª�; with x.t0/ 2 ELŒt0� D
E.x0; X0/; we have

Px D A.t/x C B.t/uŒt � C C.t/v.t/; yŒt � D G.t/x C Ÿ.t/;

PxL D A.t/xL C B.t/uŒt � C C.t/q.t/ C L.t/.yŒt � � G.t/xL/; xL.t0/ D x0;

(10.37)

PXL D .A.t/ � L.t/G.t//XL C XL.A.t/ � L.t/G.t//0 C .�.t/ C ¦.t//XLC

C .¦.t//�1Q.t/ C ��1.t/L.t/G.t/R.t/G0.t/; XL.t0/ D X0: (10.38)

The parametrizing functions ¨.t/ D f�.t/ > 0; ¦.t/ > 0; L.t/g may be taken
piecewise continuous.

Theorem 10.6.2. The next relation is true

XyŒ£� D
\

fELŒ£� j ¨.�/g:

Among these parametrizers, one may select some optimal or some tight ones when
one could have, for some direction l 2 Rn; a related triplet ¨0.�/, that ensures the
equality ¡.l j XyŒ£�/ D ¡.l j fELŒ£� j ¨0g/.

For WŒ£� we may also apply ellipsoidal approximations of the types indicated
in Chap. 5 (see also paper [149]), or use discretized versions for reachability under
uncertainty (see [133]). Here available are internal and external ellipsoidal bounds
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E.w�.£/; W�.£// 	 WŒ£� 	 E.w�.£/; WC.£//

that depend on internal and external parametrizing functions �.t/; S.t/ and tuning
parameter r.t/ > 0. The equations for w�.t/; WC.t/; W�.t/ are of the type (B.t/ D
.B.t/P.t/B 0.t//1=2; C.t/ D .C.t/Q.t/C 0.t//1=2/:

Pw� D A.t/w� C B.t/p.t/ C C.t/q.t/; w�.ª/ D m; (10.39)

PWC D A.t/WC C WCA0.t/ � �.t/WC � ��1.t/B.t/

C r.t/.WCS.t/C.t/ C C0.t/S 0.t/WC/; WC.ª/ D M: (10.40)

PW� D A.t/W� C W�A0.t/ C �.t/W� C ��1.t/C.t/

� r.t/.W�S.t/B.t/ C B0.t/S 0.t/W�/; W�.ª/ D M: (10.41)

With �.t/ > 0; r.t/ > 0 and orthogonal matrices S.t/S 0.t/ D I; we have

E.w�.t/; WC.t// D W 0CŒt � 
 WŒt � 
 W 0�Œt � D E.w�.t/; W�.t//;

where

W 0CŒt � D fw W hw � w�.t/; W �1C .t/.w � w�.t/i � 1g;

W 0�Œt � D fw W hw � w�.t/; W �1� .t/.w � w�.t/i � 1g;
whatever be the functions �.t/ and the orthogonal matrices S.t/. Following [180],
we have the next proposition.

Theorem 10.6.3. The next property is true

WŒ£� D
[

fE.w�.£/; W�.£// j �.�/; S.�/g:

The parameter r.t/ in (10.35) may be taken as r.t/ D hle; W�Œt �lei�1=2.

Suppose le is a unique support vector for XyŒt �; WŒt �. Then, along the lines of
Chap. 3, Sects. 3.2 and 3.7, one may describe the values of �e.t/; ¦e.t/; Le.t/
for (10.33) and �.t/; S.t/; r.t/ for (10.35) that ensure the equalities

�e.t/ D hle; C.t/lei1=2hle; XLŒt �lei�1=2; ¦.t/ D hle; L0

eR.t/Lelei1=2hle; XLŒt �lei�1=2;

(10.42)

�.t/ D hle; C.t/lei1=2hle; W�Œt �lei�1=2;

hle; W�.t/S.t/B.t/P 1=2.t/lei1=2 D hle; B.t/lei1=2hle; W�Œt �lei1=2; (10.43)

We now pass to the computation scheme.
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We return to problem (10.31), in view of relations

XyŒ£� 	 ELŒ£� D E.xL.£/; XL.£//; WŒ£� 
 E�
�S Œ£� D E�;S .w�.t/; W�.t//:

Substituting sets XyŒ£�; WŒ£� in (10.31) by their ellipsoidal approximations, we
take the externals for XyŒ£� and the internals for WŒ£�. Then, instead of Vh.£; XyŒ£�/

we get its approximation VhE .£; �/; that also depends on the parametrizing functions
for approximating ellipsoids. We may then “tune” the parametrizers, selecting them
so as to minimize the error of approximation (which, with proper tuning, may even
tend to zero). Denote l0

E to be the unique optimizer for problem

VhE .£; ELŒ£�/ D maxf¡.l j G.ª; £/ELŒ£�/ � ¡.l j G.ª; £/E�
�S Œ£�/ j < l; l >� 1g:

(10.44)

The ellipsoidal-valued states involved here are finite-dimensional elements, of type
fx; Xg; fw; W g, whose evolution is explicitly described by ordinary differential
equations. The approximate control strategy U 0

L may then finally be taken as the
minimizer in u0 D U 0

l D U.t; X / of the total derivative dVhE .t; ELŒt �/=dt ju.
The question is: will the approximate control strategy U 0

L perform as successfully
as the exact solution U 0? And what would be the suboptimal neighborhood ML

of set M reachable through strategy U 0
L despite the uncertainties as compared to

M 0 D M”; ” D ”0?
In order to reach the answers we shall calculate the derivatives of functions

¡.l j G.ª; t/EL.t//; ¡.l j G.ª; t/E�
�S .t// involved in (10.38), using notation

le.t/ D G0.ª; t/l0
E . Then, taking l0 D l0

E , using relations (10.42), (10.43), and
the Cauchy–Bunyakovsky inequality

hl; L0GXCli � hG0Ll; XCG0Lli1=2hl; XCli1=2;

after some calculations, we have

d¡.l0 j EL.t//=dt D �.hl0; L0G.t/XC.t/G0.t/L0l0i1=2Chl0; L0
0G.t/.x � x�/i/

Chl0; L0Ÿ.t/i � hl0; L0
0R.t/L0l0i1=2 C hl0; C.t/vŒt �i C hl0; B.t/uŒt �i: (10.45)

Similarly, we get

d¡.l0 jE�
�S .t//=dt D hl0; B.t/p.t/ C C.t/q.t/i C hl0; C.t/l0i1=2 � hl0; B.t/l0i:

(10.46)

Here x; Ÿ are those that generated the realized measurement y.t/ D G.t/xCŸ.t/.
Substituting this in (10.44), we find the total derivative

dVhE .£; ELŒ£�/=dt D �hl0; L0G.t/XC.t/G0.t/L0

0G.t/l0i1=2Chl0; L0

0G.t/.x�x�/iC

Chl0; B.t/.u � p.t//i C hl0; B.t/l0i1=2 C hl0; L0Ÿ.t/i � hl0; L0
0R.t/L0

l i1=2C

C hl0; C.t/.vŒt � � q.t//i � hl0; C.t/l0i1=2: (10.47)



10.7 Separation of Estimation and Control 391

Selecting

U 0
L D U 0.t; EC.x�; XC.t// D arg minfhl0; B.t/ui j u 2 E.p.t/; P.t//g D

D arg maxf�hl0; B.t/ui j u 2 E.p.t/; P.t//g; (10.48)

we minimize the derivative in (10.47), ensuring

dVhE .t; EL0Œt �/=dt

ˇ̌
ˇ̌ � 0:

Integrating the last inequality from t to ª; we come to the guaranteed condition

”0 � V .ª; EL0Œª�/ � V .t; EL0Œt �/: (10.49)

The final result is given by

Theorem 10.6.4. The solution to Problem OFC is given by control strategy (10.48),
where l0 is the optimizer in problem (10.44).

Exercise 10.6.1. Find the error estimates for (10.49)

10.7 Separation of Estimation and Control

In order to simplify calculations for linear systems we shall treat the given Problem
OFC in another coordinate system. Following Sect. 1.1 and taking G.t; £/ to be the
fundamental transition matrix

@G.t; £/

@t
D A.t/G.t; £/; G.£; £/ D I;

for homogeneous system Px D A.t/x from (10.29), we introduce the transformation
x D G.ª; t/x. which brings us to a new variable x. Making the necessary changes
and returning after that to the original notations, we transform system (10.29), to the
next one

Px D B.t/u C C.t/v.t/; (10.50)

y.t/ D H.t/x C Ÿ.t/; (10.51)

under constraints u 2 P .t/, (10.4).
For passing to the solution of Problem OFC we present system (10.50), (10.51)

as the array

dx�=dt D B.t/u; x�.t0/ D 0; (10.52)
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and

dw=dt D C.t/v.t/; w.t0/ 2 X 0; (10.53)

with

z.t/ D H.t/w C Ÿ.t/; (10.54)

where

x� C w D x; z.t/ D y.t/ � H.t/

Z t

t0

B.s/u�Œs�ds:

With u D uŒs�; s 2 Œt0; t/ given, there will be a one-to-one mapping
between realizations yŒs� and zŒs�. We may now define the information set of
system (10.53), (10.54), denoting it as WzŒt � D Wz.t; �/. Then we have XyŒt � D
x�Œt � C WzŒt �.

Then x�.t/ will define an isolated undisturbed controlled trajectory, while the
set-valued observer WzŒt � will give a joint estimate of the existing disturbances in
system (10.53), (10.54). Tube WzŒt � t 2 Œt0; £� may be calculated on-line, separately
from the problem of specifying the control itself.

Applying such separation to procedures of Sects. 10.5 and 10.6 may be useful for
solving concrete problems of OFC.

The chapter is now concluded by a few examples.

10.8 Some Examples

These examples illustrate the solution of Problem OFC under various types of
unknown disturbances. The system equation is

� Px1 D x2 C ©1v
Px2 D u C ©2v

with measurement output

y.t/ D x1.t/ C Ÿ.t/;

constraints juj � �; jvj � � � �; 0 < ©1 < ©2 < 1; jŸj � ˜; starting set
X 0 D E.0; I /; and target set E.m; M/; m 6D 0; M 6D I .

The actual disturbances which are unknown are modelled here by the following
types of functions:

in Fig. 10.1 by v.t/ D � cos 5t; Ÿ.t/ D ˜ sin 4t ,
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Fig. 10.1 Unknown oscillating disturbances

in Fig. 10.2 by

v.t/ D
8<
:

™1; with j™1j � �; ™1  N .0; 1/;

��; with ™1 < ��;

�; with ™1 > �;

where N .0; 1/ stands for the normal distribution with zero mean and unit
variance,
in Fig. 10.3 by v.t/ � 0; Ÿ.t/ � 0 which means the disturbances are zero-valued,
but we do not know that. This is the worst-case disturbance.

Concluding Remarks

This chapter describes theoretical tools and computation approaches for the problem
of optimizing OFC under set-membership bounds on controls and uncertain items. It
indicates solution routes, which allow one to cope with uncertainty and incomplete
measurements within finite-dimensional techniques, with effective computational
schemes given for linear systems without imposing matching conditions for the hard
bounds on controls and input disturbances. It also demonstrates the applicability of
tools presented in this book to significant problems of control. The chapter is also
an invitation to a broad research on challenging problems in feedback control under
realistic information with increasing number of new motivations.
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Fig. 10.2 Unknown random disturbances

Fig. 10.3 Unknown disturbances are zero-valued



Chapter 11
Verification: Hybrid Systems

Abstract This chapter deals with a specific class of hybrid systems which combine
controlled continuous dynamics through switching from one available motion
to another due to discrete-time logical commands. Solutions to the reachability
problem and their verification are indicated, followed by computational schemes,
The application of impulse controls to the switching process is described. Examples
of various difficulty are worked out. The chapter is to demonstrate applicability of
methods of this book to hybrid systems.

Keywords Hybrid system • Switching • Reachability • Verification • Branching
trajectory tubes • Ellipsoidal methods • Impulse feedback control

The main part of this chapter deals with a specific class of hybrid systems
(see [39, 91, 204, 228, 258]). Their performance is due to an array of standard
systems with acting motion generated by only one of them and with instantaneous
switchings from one to another. The switchings are governed by a discrete time
process that generates logically based commands when crossing some prespecified
spatial domains (“the guards”). The reachability problem for such processes leads
to branching trajectory tubes. Their description is complemented by verification
problems whose solution, loosely speaking, should show which branch intersects
with a given target zone or misses. Hence the chapter starts with description of the
verification problem and methods of its solution, then passes to described target
controlled hybrid dynamics and its verification. Ellipsoidal computation schemes
for problems of reachability and verification in hybrid processes for isolated linear
systems are indicated. Finally discussed is the application of impulse controls to
such dynamics. Several examples of various difficulty are demonstrated. The aim
of this chapter is to demonstrate the applicability of methods given in this book to
hybrid processes.
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11.1 Verification Problems

The problems of reachability and solvability are closely related to that of verification
for the achieved solutions. The aim of verification is to check whether suggested
algorithms do solve the intended problem.

11.1.1 The Problems and the Solution Schemes

Problem 11.1.1. Given time ª, target set M 2 compRn and set X 0 D X Œt0�, verify
which of the following relations is true:

(i) X .ª; t0; X 0/ 	 M (all the reachable points are in M ),
(ii) X .ª; t0; X 0/ \ M 6D ; (some of the reachable points are in M ),

(iii) X .ª; t0; X0/ \ M D ; (set M is not reachable from ft0; X0g at time ª).

Since X .ª; t0; X 0/ is the level set of the value function at time t D ª (see Chap. 2,
Sect. 2.3):

V.t; x/ D V.t; x j t0; X 0/ D min
u.�/;x.t0/

fd 2.x.t0/; X 0/ j x.t/ D xg;

V .t0; x/ D d 2.x; X 0/;

we may check conditions (i)–(iii) using the following relations:

Theorem 11.1.1. Following conditions (i)–(iii) of Problem 11.1.1 are, respectively,
equivalent to the next relations, with X .ª; t0; X 0/ D fx W V.ª; x/ � 0g W

max
x

fd 2.x; M /jV.ª; x/ � 0g D 0; (11.1)

min
x

fd 2.x; M /jV.ª; x/ � 0g D 0; (11.2)

min
x

fd 2.x; M /jV.ª; x/ � 0g > 0: (11.3)

Corollary 11.1.1. If M is the level set for a certain convex function ¥, such that

M D fx W ¥.x/ � 0g;
then conditions (11.1)–(11.3) are, respectively, equivalent to

max
x

f¥.x/jV.ª; x/ � 0g � 0;

min
x

f¥.x/jV.ª; x/ � 0g � 0;

min
x

f¥.x/jV.ª; x/ � 0g > 0:

In the previous propositions we dealt with verification of the solutions at fixed
time ª. These may be further extended in the following way.
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Theorem 11.1.2. Recalling Problem 11.1.1, suppose

sup
t

max
x

fd 2.x; M /jV.t; x/ � 0I t � t0g D 0

then property (i) is ensured for all t � t0;

if min
t

max
x

fd 2.x; M /jV.t; x/ � 0I t � t0g D 0;

then (i) is true for some t � t0;

if sup
t

min
x

fd 2.x; M /jV.t; x/ � 0I t � t0g D 0;

then (ii) will be true for all t � t0;

if min
t

min
x

fd 2.x; M /jV.t; x/ � 0I t � t0g D 0;

then (ii) will be true for some t � t0;

if inf
t

min
x

fd 2.x; M /jV.t; x/ � 0I t � t0g > 0;

then (iii) will be true for all t � t0;

if sup
t

min
x

fd 2.x; M /jV.t; x/ � 0I t � t0g > 0;

then (iii) will be true for some t � t0.

Exercise 11.1.1. Check the validity of Theorems 11.1.1, 11.1.2 and Corollary
11.1.1

Examples of solutions to this problem are given in Sect. 11.1.2.
An array of problems comes up in backward time. We mention some of these.

Problem 11.1.2. Given starting set F , and fixed time t , determine whether target
set M is reachable from position ft; xg; at any time ª � t

(i) for all states x 2 F ,
(ii) for some state x 2 F ,

(iii) is not reachable from any state x 2 F .

The conditions that ensure the solutions to this Problem are now formulated through
value function

V0.t; x/ D V0.t; xjª; M / D min
u.�/ fd 2.x.ª/; M / j x.t/ D xg; ª � t;
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Theorem 11.1.3. The set M is reachable from position ft; xg at some ª

(i) for all states x 2 F if

V0.t; F / D min
ª

max
x

fV0.t; xjª; M /j ª � t; x 2 F g D 0; (11.4)

(ii) for some state x� 2 F if

V0.t; F / D min
ª

min
x

fV0.t; xjª; M /jª � t; x 2 F g D 0; (11.5)

(iii) is not reachable from any state x 2 F if

V0.t; F / D min
x

fV0.t; x; M / j x 2 F g D inf
ª

min
x

fV0.t; xjª; M /jª � t; x 2 F g > 0:

(11.6)

Remark 11.1.1. Note that if in the above and in the sequel we write minª over
domain ª � t0, then this presumes that the minimum should be attained at some
finite time ª�.

11.1.2 Ellipsoidal Techniques for Verification Problems

Consider system (3.1) under ellipsoidal constraints (3.4), (3.6), (3.7) and ellipsoidal
target set M D E.m; M/. Dealing with formulation of the verification Prob-
lem 11.1.1 (i)–(iii) we shall solve it through ellipsoidal methods, further naming
it then as a new Problem 11.1-E (i)–(iii).

Recall that due to (3.23) we have

X Œª� D
\

fE.x?Œª�; XlCŒª�/j l W hl; li D 1g: (11.7)

where ECŒl; ª� D E.x?Œª�; XlCŒª�/ are tight external approximations of X Œª� along
direction l .

At the same time Theorem 3.7.3 indicates

X Œª� D
[

fE.x?Œª�; Xl�Œª�/j l W hl; li D 1:g (11.8)

where E�Œl; ª� D E.x?Œª�; Xl�Œª�/ are tight internal approximations of X Œª� along
direction l .

Beginning with Problem 11.1.1-E(i) we have to check the inclusion

X Œª� 	 E.m; M/: (11.9)

Then to ensure (11.9) we need to have either

min
l

f¡.l j E.m; M// � ¡.l j ECŒl; ª�/ j hl; li � 1g � 0: (11.10)
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or

min
l

f¡.l j E.m; M// � ¡.l j E�Œl; ª�/ j hl; li � 1g � 0: (11.11)

For Problem 11.1.1-E(ii) we have to check condition X Œª�
T

E.m; M/ 6D ;.
This will be ensured if E�Œl; ª�

T
E.m; M/ 6D ; for some tight internal approx-

imation E�Œl; ª� D E.x�Œª�; Xl�.ª// of X Œª�. The last requirement will be ensured
iff for some such E�Œl; ª� the inequality

¡.l j E�Œl; ª�/ � �¡.�l j E.m; M// � 0;

for all l will be true or, in other terms, if

min
l

f¡.l j E�Œl; ª�/ C ¡.�l j E.m; M// j hl; li � 1g � 0; (11.12)

Finally, for Problem 11.1.1-E(iii) we have to check that X Œª� \ E.m; M/ D ;. This
will be ensured if ECŒl; ª� \ E.m; M/ D ; for some tight external approximation
ECŒl; ª� of X Œª�; or in other terms, if the distance d.ECŒl; ª�; E.m; M// > 0 for
some such ECŒl; ª�. The latter holds iff

max
l

fmax
p

f�¡.�p j ECŒl; ª�/ � ¡.p j E.m; M// jhp; pi � 1 g j hl; li � 1 g > 0:

(11.13)

Theorem 11.1.4. The solutions to (i)–(iii) of Problem 11.1.1, as written in terms of
approximating ellipsoids, are satisfied iff the following relations are true: (11.10)
or (11.11) for (i); (11.12) for (ii) and (11.13) for (iii).

Now introduce some new notation, namely,

VC.ª; x; l/ D hx � x�Œª�; XlCŒª�.x � x�Œª�/i:
Then

ECŒl; ª� D fx W VC.ª; x; l/ � 1g; E�Œl; ª� D fx W V�.ª; x; l/ � 1g:
Denote

VC.ª; x/ D max
l

fVC.ª; x; l/ j hl; li D 1g; V�.ª; x/ D min
l

fV�.ª; x; l/ j hl; li D 1g:

Here both functions VC.ª; x; l/; V�.ª; x; l/ may serve as quadratic approximations
of value function V.ª; x/ that defines X Œª� D X .ª; t0; X 0/ (see Chap. 2, Sect. 2.3).
Namely,

VC.ª; x; l/ � VC.ª; x/ D V.ª; x/ D V�.ª; x/ � V�.ª; x; l/: (11.14)

Further denote Vm.x/ D hx � m; M.x � m/i; so that E.m; M/ D fx W Vm.x/ � 1g.
Theorem 11.1.4 may then be rewritten in terms of functions VC; V�; Vm.
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Theorem 11.1.5. Suppose one of the conditions is true:

(i) Vm.x/ � VC.ª; x/ D max
l

fVC.ª; x; l/ j hl; li D 1g; 8x;

.i i/ f9 l D Ol ; x D Ox W Vm. Ox/ � V�.ª; Ox; Ol/g;

.i i i/ f9 l D Ol W minfVm.x/ j VC.ª; x; Ol/ � 1g > 1g:
Then, respectively, the requirements (i)–(iii) of Problem 11.1.1 will be fulfilled.

This theorem implies the following conclusions (in view of V.ª; x/ D
VC.ª; x/ D V�.ª; x/ ).

Corollary 11.1.2. The solutions to (i)–(iii) of Problem 11.1.1, as written in terms
of approximating ellipsoids, are satisfied iff, respectively, the following relations are
true:

.i/ max
x

fd 2.x; E.m; M// j V.ª; x/ � 1g D 0;

.ii/ min
x

fd 2.x; E.m; M// j V.ª; x/ � 1g D 0;

.iii/ min
x

fd 2.x; E.m; M// j V.ª; x/ � 1g > 0:

An ellipsoidal version of Theorem 11.1.2 then reads as follows.

Theorem 11.1.6. If

sup
t

max
x

fd 2.x; E.m; M// j V.t; x/ � 1; t � t0g D 0;

then property (i) will be true for all t � t0;

if min
t

max
x

fd 2.x; E.m; M// j V.t; x/ � 1; t � t0g D 0;

then (i) will be true for some t � t0;

if sup
t

min
x

fd 2.x; E.m; M// j V.t; x/ � 1; t � t0g D 0;

then (ii) will be true for all t � t0;

if min
t

min
x

fd 2.x; E.m; M// j V.t; x/ � 1; t � t0g D 0;

then (ii) will be true for somet � t0;

if inf
t

min
x

fd 2.x; E.m; M// j V.t; x/ � 1; t � t0g > 0;
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then (iii) will be true for all t � t0;

if sup
t

min
x

fd 2.x; E.m; M// j V.t; x/ � 1; t � t0g > 0;

then (iii) will be true for some t � t0.

Exercise 11.1.2. Formulate and prove an ellipsoidal version of Theorem 11.1.6.

11.2 Hybrid Dynamics and Control

The previous chapters of this book deal with various types of problems on control for
systems whose mathematical models are described by standard ordinary differential
equations. However, recent applications may require treating such problems in a
more complicated setting, under complex dynamics. In the present chapter such
systems are of the hybrid type. The notion of hybrid system has various definitions
(see [36,39,204,229,258,259]). However, the main idea is that the system is defined
by an array of standard systems such that the active motion is due to only one of
them, with instantaneous switching from one to another. The process of switching
is usually logically controlled in discrete times, in such way that a possible switch
may occur only when passing through some spatial domains (the “guards”), or may
not occur. The performance range of such systems is then obviously broader than
that of standard systems. Hence, the overall controlled motions will develop in
time as those generated by alternating isolated continuous motions due to systems
whose sequence is controlled through logically based discrete commands, while
their individual contribution is designed by its own controllers. The switching from
one system to another may be also accompanied by an instantaneous change of some
phase coordinates.

Despite the fairly complicated overall dynamics, efficient computation of control
solutions for hybrid processes appears to be also available through ellipsoidal-
valued approximations for systems composed of individual participants of the types
described above. The discussion given below is devoted to linear controlled systems,
though the overall schemes may be also applied under individual nonlinearities.

11.2.1 The Hybrid System and the Reachability Problem

The System

The considered overall system H is governed by an array of linear subsystems
(i D 1; : : : ; k)

Px 2 A.i/.t/x C B.i/.t/u.i/.t/ C C .i/.t/v.i/.t/; (11.15)
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with continuous matrix coefficients A.i/.t/; B.i/.t/; C .i/.t/ and x 2 Rn. Here
u.i/ 2 Rp are piecewise open-loop controls u.i/.t/ restricted by inclusions
u.i/.t/ 2 P .i/.t/, where P .i/.t/, are set-valued functions with convex compact
values, continuous in time. Functions v.i/ are taken to be given.

In this section we consider hard bounds that are ellipsoidal-valued, with

P .i/.t/ D E.p.i/.t/; P .i/.t//: (11.16)

In the phase space Rn given are k hyperplanes (affine manifolds)

Hj D fx W hc.j /; xi � ”j D 0g; c.j / 2 Rn; ”j 2 R ; j D 1; : : : ; k:

which are the enabling zones (the guards).
Here is how the system operates.
At given time t0 the motion initiates from starting set X 0 D E.x0; X0/ and

follows one of the equations of the above (take i D 1, to be precise), due to one of
the controls u.t I 1/ until at time £0Œ1� it reaches some Hj D H.j Œ1�/—the first of the
hyperplanes along its route (we assume j 6D 1). Now a binary operation interferes—
the motion either continues along the “old” subsystem (a “passive” crossing), with
system number i D 1 or switches to (is reset to) a “new” subsystem (an “active”
crossing), with system number indexed as i D i Œ1� D j Œ1� 6D 1. (Otherwise, if
j Œ1� D 1, we presume there is a passive crossing, with no reset.)

Some Notation. Each number Œ›� D Œ1�; Œ2� : : : ; in square brackets is the sequential
number of crossing a hyperplane Hj , so that the range of fj Œ›�; › 2 ZCg is j 2
f1; : : : ; kg. Here and further ZC is the set of positive integers. The range of system
numbers i Œ›�; › 2 ZC; after each crossing is also i 2 f1; : : : ; kg.

Then, before crossing Hj Œ1� D H.j Œ1�/, the state of the system is denoted as
ft; x; Œ1C�g while after the binary operation it is either ft; x; Œ1C; i Œ1�C�g—if the
crossing was active (a reset), or ft; x; Œ1C; i Œ1���g, if it was passive (no reset).

We assume, for the sake of brevity, that an active crossing a hyperplane Hj is a
switching to system with i D j .

So, after first crossing, the further motion develops along i D 1 or i D i Œ1� until
crossing the next hyperplane H.j Œ2�/ where a similar binary operation is applied—
the motion either continues along the previous subsystem or switches to (is reset to)
subsystem with index i Œ2� D j Œ2�. After the second crossing the state of the system
is ft; x; Œ1C; i Œ1�s; i Œ2�s�g, where the boolean index “s” is either s D C or s D �.

Note that the state of the system has a part ft; xg without memory related to the
running on-line position of the continuous-time variable and a part Œ1C; i Œ1�s; i Œ2�s�

with memory, related to the discrete event variable i sŒ›�, which describes the
sequence of switchings made earlier by the system.1

1The part with memory may be important for making the decision—“to switch” or “not to switch,”
for example, if the number of switchings is restricted.
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At each new crossing a new term is added to this sequence. Thus the following
general rules should be observed:

(i) that crossing each hyperplane Hj results either in a reset to subsystem with
number j or in no reset at all,

(ii) that the crossing takes place in direction of support vectors c.j /, and at points
of crossing we have

minfhc.j /; zijz 2 F .i/.t; x/g � © > 0; 8i; j D 1; : : : ; k; 8x 2 Hj

(11.17)
where

F .i/.t; x/ D A.i/.t/x C B.i/.t/E.p.i/.t/; P .i/.t// C C .i/.t/v.i/.t/I

(iii) that the state space variable after › crossings is ft; x; i Œ1�s1; : : : ; i Œ›�s›g where
each “boolean” index “s” is either C or �.

(iv) that at a crossing with hyperplane Hj the sequence of type fi Œ1�s; : : : ; i Œ›�Cg,
describing the “discrete event” part of the state is complemented by a new term,
which is either i Œ› C 1�C if there is a switching to system, or i Œ› C 1��, if there
is no switching.

Such a notation allows to trace back the array of subsystems used earlier from any
current position ft; xg. Thus, if the state is ft; xI 1C; i Œ1��; : : : ; i Œ›��g with s D �
for all i Œ1�; : : : ; i Œ›�, then the trajectory did not switch at all throughout any of the ›

crossings, having followed one and the same subsystem with i D 1 throughout the
whole process. Note that at each state ft; x; Œ1C; i Œ1�s; : : : ; i Œ›�s�g the system is to
follow the subsystem whose number coincides with that of the last term with index
s D C.

We will be interested in the reachability problem for such systems.

Remark 11.2.1. The system under consideration is one of the possible types of
hybrid systems. It differs from the so-called switching systems in that the time
instants for crossing are not given, but are located during the spatial course of the
trajectory as intervals of crossing some specified domains (the “guards”) where it is
also possible to reset the phase coordinates. The suggested scheme also allows to be
propagated to a broad variety of options with different information requirements.

Remark 11.2.2. In this chapter the guards are taken as hyperplanes and the time
of each crossing is unique for every trajectory. An example of propagating the
suggested scheme is when the guards are taken as a domain bounded by two parallel
hyperplanes.The switching is then assumed possible at any time within this domain.
This situation with an example is indicated at the end of the present section.

The problems considered in this chapter deal with reachability under piecewise—
open-loop controls with possible resets of controlled systems at given guards,
taken as hyperplanes, so that between these zones the control is open-loop. For
further considerations the restriction on starting set X 0 is of ellipsoidal type:
X 0 D E.x0; X0/.
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Reachability Under Resets

The reachability problem consists of two versions.

Problem 11.2.1. Find all vectors fxg reachable from starting position ft0; X 0g at
given time t D £ through all possible controls: “the reach set X .£I t0; X 0/ at time £

from ft0; X 0g”.

Problem 11.2.2. Find all vectors fxg reachable at some time t within interval t 2
Œt 0; t 00� D T through all possible controls: “the reach set X .t 0; t 00I t0; X 0/ within
interval T from ft0; X 0g”.

One may observe that the problem consists in investigating branching trajectory
tubes, in describing their cross-sections (“cuts”) and the unions of such cross-
sections. The reach sets may therefore turn out to be disconnected sets. We next
discuss reach sets at given time t .

We first describe the reach set for a given sequence Œi0; i Œ1�s1 ; : : : ; i Œl �sl � of
crossings, from position ft0; X 0; i0g, assuming i0 D 1 to be precise. Here index
si is either � or C.

The Reach Set After One Crossing

(a) Suppose that before reaching Hj ; i Œ1� D j; we have

X .1/Œt � D X .1/.t I t0; X 0; Œ1C�/ D

G.1/.t; t0/X 0 C
Z t

t0

G.1/.t; s/.B.s/P .1/.s/ C C.s/v.1/.s//ds

where G.i/.t; s/ is the transition function for the i -th subsystem.
(b) To be precise, suppose that before reaching Hj we have

maxfhc.j /; xi j x 2 X .1/Œt �g D ¡C
j .t/ < ”j :

The first instant of time when X .1/Œt �
T

Hj 6D ; is £0
j . It is found as the

smallest root of the equation

”j � ¡C
j .t/ D 0; t � t0:

Introducing the function

minfhc.j /; xi j x 2 X .1/Œt �g D ¡�
j .t/;

we may also observe that condition X .1/Œt �
T

Hj 6D ; will hold as long as

¡�
j .t/ � ”j � ¡C

j .t/;
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and the point of departure from Hj is the smallest positive root £00
j of the

equation

”j � ¡�
j .t/ D 0; t � £0

j :

Condition (11.17) ensures that points £0
j ; £00

j are unique. Note that £00
j is the

time instant when the entire reach set X .1/Œt � leaves Hj .

Denote X .1/Œt �
T

Hj D Z.1/
j .t/.

(c) After the crossing we have to envisage two branches:
(�) with no reset—then nothing changes and

X .t I t0; X 0; Œ1C; j ��/ D X .1/.t I t0; X 0; Œ1C�/

(C) with reset—then we consider the union

[
fX .j /.t I s; Z.1/

j .s//js 2 Œ£0
j ; £00

j �g D X .t I t0; X 0; Œ1C; j C�/; t � £00
j :

Here in case (�) the reach tube develops further along the “old” subsystem (1),
while in case (+) it develops along “new” subsystem (j ).

A Branch of the Reachability Set

For each new crossing we may now repeat the described procedure. Thus,
we may obtain the reach set X .t; t0; X 0I 1C; i Œ1�s1 ; : : : ; i Œl �sl / for a branch
f1C; i Œ1�s1 ; : : : ; i Œl �sl g.

We further assume the next condition

Assumption 11.2.1. The neighboring intervals of crossing



£0

›; £00
›

�
; › D 1;

: : : ; l; do not intersect. It is presumed that £00
› < ª; where Œt0; ª� is the interval

under consideration. �

Taking an interval Œt0; t �, with £00
i Œk�1� � t � £0

i Œk� and £00
i Œm�1� � t � £0

i Œm�; i Œl � <

iŒm�, one may observe the following semigroup type property.

Lemma 11.2.1. Each branch f1C; i Œ1�s1 ; : : : ; i Œk�smg yields the following superpo-
sition property (1 � k � m)

X .t; t0; X 0I 1C; i Œ1�s1 ; : : : ; i Œm�sm/ D

D X .t; t�; X .t�; t0; X 0I 1C; i Œ1�s1 ; : : : ; i Œk�sl /I i Œk�slC1 ; : : : ; i Œm�sm/: (11.18)
�

The computation of a branch may be done as a sequence of one-stage crossing
transformations.
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Recall that the continuous-time transition between crossings, along system
j D j1 from a continuous-time position f£; X g with £ � £00

j1
to a position at time

t � £0
j2

; is X .j1/.t; £; X /.
Then, for example, given position (state) f£0

j ; X I Œ1C�g, at start of crossing Hj ,
we may define a “one-stage crossing” transformation

T
.s/
j f£0

j ; X ; Œ1C�g D f£00
j ; X .1/.£00

j ; £0
j ; X /; Œ1C; j ��g; if s D �;

and

T
.s/
j f£0

j ; X ; Œ1C�g D f£00
j ; Z.j /Œ£00

j �; Œ1C; j C�g; if s D C:

Here

Z.j /Œ£00
j � D

[
t

fX .j /.£00
j ; t; Hj \ X .1/.t; £0

j ; X //j t 2 Œ£0
j ; £00

j �g

The Branch of One-Stage Transformations
We may now represent a branch f1C; i Œ1�s1 ; : : : ; i Œk�sk g through a sequence of

interchanging operations of type T
.s/
j and X .j /.

For example, the reach set for branch f1C; i Œ1�C; i Œ2��g; from starting position
f£; X ; Œ1C�g; £ � £0

i1, at time t 2 Œ£00
i2; £0

i3�; may be represented as the output of the
following sequence of mappings. (Here and further, to clarify when necessary the
notation of lower indices, we denote i› D i›)

T C
i1 f£0

i1; X .1/.£0
i1; £; X /; Œ1C�g D f£00

i1; Z.i1/Œ£00
i1�; Œ1C; i Œ1�C�g

X .i1/Œ£0
i2� D X .i1/.£0

i2; £00
i1; Z.i1/Œ£00

i1�/;

T �
i2 f£0

i2; X .i1/Œ£0
i2�; Œ1C; i Œ1�C�g D f£00

i2; X .i1/.£00
i2; £0

i2; X .i1/Œ£0
i2�/; Œ1C; i Œ1�C; i Œ2���g

Then, for t > £00
i2, the desired set of positions is given as

ft I X .i1/.t; £0
i2; X .i1/.£0

i2; £00
i1; Z.i1/Œ£00

i1�//; Œ1C; i Œ1�C; i Œ2���g:

This is a branch of the overall reach set. The continuous variables for this branch
at t 2 Œ£00

i2; £0
i3/ produce the equality

X .t I £; X / D X .i1/.t I £0
i2; X .i1/Œ£0

i2�/:

Lemma 11.2.2. A branch of type X .t I t0; X 0/ W i D 1˙; i Œ1�s1 ; : : : ; i Œ›�s› ; may be
described by a superposition of interchangings one-stage crossing transformations
T s

i› and continuous maps X .›/; › D 1; : : : ; l .
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An alternative scheme for calculating reach sets is to describe them through value
functions of optimization problems. Its advantage is that it is not restricted to linear
systems.

11.2.2 Value Functions: Ellipsoidal Approximation

Reachability Through Value Functions

As indicated in [175], the “reach” (reachability) sets for “ordinary” (nonhybrid)
systems may be calculated as level sets of solutions to HJB (Hamilton–Jacobi–
Bellman) equations for some optimization problems. We will follow this scheme
for the hybrid system under consideration. Consider first a one-stage crossing.

(a) Before the crossing HiŒ1� D Hj , we assume that the system operates from
position ft0; X 0; Œ1C�g and the next crossing starts at £1. Then, for t < £1, we
have

X .1/Œt � D fx W V .1/.t; x/ � 0g;

where

V .1/.t; x/ D min
u.1/

fd 2.x.1/.t0/; X 0/jx.1/.t/ D xg;

and x.i/.t/ D x.t/ is the trajectory of the i-th system. We further also use the
notation V .1/.t; x/ D V .1/.t; x1; x2; : : : ; xn/.

(b) At the crossing we have X .1/Œt � \ Hj D Z.1/
j .t/ which can be calculated as

follows.
Without loss of generality we may presume c

.j /
1 D 1. Then

Z.1/
j .t/ D fx W x1 D —.x/; V .1/.t; —.x/; x2; : : : ; xn/ � 0g \ Hj ; —.x/ D ”1 �

nX
iD2

c
.j /
i xi :

In particular, if the hyperplane Hj D fx W x1 D ”1g, then

Z.1/
j .t/ D fx W x1 D ”1; V .1/.t; ”1; x2; : : : ; xn/ � 0g:

and the set Z.1/
j .t/ 6D ; iff ¡�

j .t/ � ”j � ¡C
j .t/, where

¡C
j .t/ D maxf.c.j /; x/ j V .1/.t; x/ � 0g;

¡�
j .t/ D minf.c.j /; x/ j V .1/.t; x/ � 0g:

This happens within the time interval Œ£0
j ; £00

j �; ¡�
j .£00

j / D ”j ; ¡C
j .£0

j / D ”j .
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(c) After the crossing we envisage two branches:

(�) with no reset—then X .t I t0; X 0; Œ1C; j ��/ D X .1/.t I t0; X 0; Œ1C�/,
(C) with reset—then we have to calculate the union

[
fX .j /.t I s; Z.1/

j .s//js 2 Œ£0
j ; £00

j �g D X .t I t0; X 0; Œ1C; j C�/; t � £00
j :

With t > £00
j this union may be calculated as the level set for function

V .t; x j Œ1C; j C�/ D min
s

fV .j /.t; s; x/ j s 2 Œ£0
j ; £00

j �g

where

V .j /.t; s; x/ D min
u.j /

fV .1/.s; —.x.s//; x2.s/; : : : ; xn.s//j s 2 Œ£0
j ; £00

j �; x.t/ D xg;

so that

X .t I t0; X 0; Œ1C; j C�/ D fx W V .t; xjŒ1C; j C�/ � 0g D
[

s

fX .j /Œt; s� j s 2 Œ£0
j ; £00

j �g;

X .j /Œt; s� D X .j /.t I s; Z.1/
j .s// D fx W V .j /.t; s; x/ � 0g:

Remark 11.2.3. Note that in general the union above is nonconvex.

(d) Repeating the procedure for each new crossing, we may obtain the reach set
X .t I t0; X 0; Œ1C; i Œ1�.s1/; : : : ; i Œk�.sk/�/ for a branch Œ1C; i Œ1�.s1/; : : : ; i Œk�.sk/�.

These are the general schemes to compute reachability sets for the given class of
hybrid systems. We further indicate some ellipsoidal techniques for problems of
this chapter.

Reachability Through Ellipsoidal Approximations

Let us first calculate the reachability set after a one-stage crossing transformation.

(a) Starting with X 0 D E.x0; X0/; i D 1; the reach set X .t I t0; X 0; Œ1C�/ is due
to equation

Px D A.1/.t/x C B.1/.t/E.p.1/.t/; P .1/.t// C C .1/.t/v.1/.t/;
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which yields the following ellipsoidal approximations (see Chap. 3,
Sects. 3.2, 3.3, 3.7 and 3.9).

E.x.1/.t/; X.1/� .t// 	 X .t I t0; X 0; Œ1C�/ 	 E.x.1/.t/; X
.1/
C .t//;

where

PX.1/
C D A.1/.t/X

.1/
C CX

.1/
C A.1/0

.t/C�.t/X
.1/
C C.�.t//�1B.1/.t/P .1/.t/B.1/0

.t/;

(11.19)

PX.1/� D A.1/.t/X.1/� C X.1/� A.1/0
.t/C

CX
.1/��S.t/B.1/.t/.P .1//1=2.t/ C .P .1//1=2.t/B.1/0

.t/S 0.t/X.1/��
0
;

Px.1/ D A.1/.t/x.1/ C B.1/.t/p.1/.t/ C C .1/.t/v.1/.t/;

�.t/ > 0; S.t/S 0.t/ D I; X��X 0

��
D X�; X

.1/

C
.t0/ D X.1/

�
.t0/ D X0; x.1/.t0/ D x0:

Here

�.t/ D hl.t/; B.t/P.t/B 0.t/l.t/i1=2.l; X
.1/
C .t/l/�1=2;

S.t/B.t/P 1=2.t/l.t/ D œ.t/S0.X0/1=2l;

œ.t/ D hl.t/; B.t/P.t/B 0.t/l.t/i1=2hl; X0li�1=2; S 0
0S0 D I:

As indicated in Chap. 3, these approximations, which depend on l; will be
tight along a given good curve l.t/ D G.1/0

.t0; t/l; l 2 Rn, generated by
G.i/.t0; t/—the fundamental transition matrix for the homogeneous system
(11.15). Namely, for such l D l.t/ we have X.1/� .t/ D X.1/.t jl/, X

.1/
C .t/ D

X
.1/
C .t jl/ and

¡.l j E.x.1/.t/; X.1/� .t jl/// D ¡.l j X .t I t0; X 0; Œ1C�// D ¡.l j E.x.1/.t/; X
.1/
C .t jl///:

(11.20)

Moreover,
[

l

E.x.1/.t/; X.1/� .t jl// D X .t I t0; X 0; Œ1C�/ D
\

l

E.x.1/.t/; X
.1/
C .t jl//:

(11.21)

over all fl W hl; li � 1g.
(b) Let us now discuss the crossings E

.j /
1 .t jl/ D E.x.1/.t/; X

.1/
C .t jl// \ Hj . Let

e.i/ be the unit orths for the original coordinate system.
Introducing the linear map

Tc.j / D e.1/I Te.i/ D e.i/; i D 1; : : : ; k; i 6D j; jTj 6D 0;
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Without loss of generality we may transform hyperplane Hj into hyperplane
x1 D ” and take ” D 0; marking Hj as H1.j / and defining it by the equality
x1 D 0. Then, keeping previous notations in the new coordinates, we have2

E
.j /
1 .t jl/ D E.z.j /.t/; Z

.j /

1C
.t j l// D

D E.x.1/.t/; X
.1/
C .t j l// \ H1.j / D fx W V

.1/
C .t; x j l/ � 1; x1 D 0g;

where

V
.1/

C .t; x j l/ D hx � x.1/.t/; .X
.1/
C /�1.t j l/.x � x.1/.t//i: (11.22)

The intersection E
.j /
1 .t jl/ is a degenerate ellipsoid whose support function

is

¡.l jE.j /
1 .t j l// D hl; z.j /.t/i C hl; Z

.j /

1C
.t j l/li1=2;

which may be calculated through standard methods of linear algebra.

Exercise 11.2.1. Calculate the parameters of support function for ellipsoid
E

.j /
1 .t jl/.
Now, in the n-dimensional space H1.j / D fx W x1 D 0g, we may consider an

array of ellipsoids E.z.j /.t/; Z
.j /

1C
.t j l//, and

t 2 Œ£0
j ; £00

j � D T D
[n

Tl

\
Œ£0; £00� j hl; li � 1

o
;

where

Tl D ft W 9x D .0; x2; : : : ; xn/ W hx � x.1/.t/; .X
.1/
C /�1.t j l/.x � x.1/.t//i � 1g:

Then for any l we have the relations

E.z.j /.t/; Z
.j /

1C
.t j l// 


\
l

fE.z.j /.t/; Z
.j /

1C
.t j l// j hl; li � 1g D Z.j /

1 Œt �:

where the equality follows from (11.20).
When propagated after the reset along the new subsystem .j /, with ª � £00

j , each

of the ellipsoids E.z.j /.t/; Z
.j /

1C
.t j l// is transformed into

2From here on it is important to emphasize the dependence of ellipsoids, reach sets, and value
functions on l . Therefore we further include l in the arguments of respective items.
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X .j /
C Œª; t j l � D X .j /

C .ª; t; E.z.j /.t/; Z
.j /

1C
.t j l/// D

G.j /.ª; t/E.z.j /.t/; Z
.j /

1C
.t j l//C

C
Z ª

t

G.j /.t; s/.B.s/E.p.j /.s/; P .j /.s// C C.s/v.j /.s//ds:

Note that though generated by an ellipsoid, the set X .j /Œª; t � in general is not an
ellipsoid. However, it may be externally approximated by an array of parametrized
ellipsoids according to Sects. 3.2 and 3.3. Namely the following property is true.

Lemma 11.2.3. The exact reachability set from position ft; Z.j /

1C
Œt �g is

X .j /
C Œª; t � D

\
fX .j /

C Œª; t j l � j hl; li � 1g:

Here for each l there is an ellipsoidal approximation. For example, taking t D £ 2
Œ£0; £00� in the previous line gives

X .j /
C Œª; £ j l � 	 E£.x

.j /.ª/; X
.j /
C .ª j q; l//:

Elements x.j /.t/; X
.j /
C .t/; t 2 Œ£; ª� of this relation satisfy the following equations

PX.j /
C D A.j /.t/X

.j /
C CX

.j /
C A.j /0

.t/C�q.t/X
.j /
C C.�q.t//�1B.j /.t/P .j /.t/B.j /0

.t/;

(11.23)

Px.j / D A.j /.t/x.j / C B.j /.t/p.j /.t/ C C .j /.t/v.j /.t/;

with starting conditions

x.j /.£/ D z.j /.£/; X
.j /
C .£/ D Z.j /

1 Œ£�:

Note that the approximating sets E£.x
.j /.ª/; X

.j /
C .ª j q; l// depend on two vector

parameters: l 2 Rn (calculated with � D �l ; from Eq. (11.20) and responsible for
finding Z.j /

1 Œ£�) and q 2 Rn�1 (calculated with �q; from Eq. (11.19) and responsible
for finding X .j /Œª; £�). Function �q.t/ is calculated by formulas similar to �l .

We finally come to the following conclusion

Theorem 11.2.1. The following equality is true:

X .j /
C Œª; t j Z.j /

1 Œ£�� D
\

fE£.x
.j /.ª/; X

.j /
C .ªjq; l// j klk � 1; kqk � 1g:

The last formula indicates the possibility of using parallel calculations through an
array of parametrized identical procedures and synchronization of their results.
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The final move is now to find the union

X .ª; t0; X 0/ D
[

fX .j /
C .ª; £ j Z.j /

1 Œ£�/ j £ 2 T g: (11.24)

which produces the final nonconvex reachability set.

Theorem 11.2.2. The final reachability set X .ª; t0; X 0/ after one crossing with an
active switching is given by the union (11.24).

Hence the final reach set may be presented as the union of intersections, namely

X .ª; t0; X 0/ D
[

£

\
l;q

fE£.x
.j /.ª/; X

.j /
C .ª j q; l// j klk � 1; kqk � 1; £ 2 T g: (11.25)

The above relation is written in the form of set-valued functions. But it may be
also written in terms of single-valued functions. Indeed, since

E£.x
.j /.ª/; X

.j /
C .ª j q; l// D fx W V.ª; £; x j q; l/ � 1g;

and

V.ª; £; x j q; l/ D fx W hx � x.j /.t/; .X
.j /
C .ª; £ j q; l//�1.x � x.j /.t//i � 1g;

define

V.ª; t0; x/ D min
£

max
l;q

fV.ª; £; x j q; l/ j klk � 1; kqk � 1; £ 2 T g: (11.26)

Then

Theorem 11.2.3. The reachability set X .ª; t0; X 0/ after one crossing with an active
switching is the level set

X .ª; t0; X 0/ D fx W V.ª; t0; x/ � 1g: (11.27)

The above value functions thus allow both external approximations and an exact
description of the reach set. A similar scheme is true for internal approximations.

Recall that calculation of unions of reachability sets was discussed in Sect. 5.2
where an example was also given. For computational purposes we refer to following
considerations from this subsection.

According to the theory of minimax problems we have

V.ª; t0; x/ D min
£

max
l;q

fV.ª; £; x j q; l/ j klk � 1; kqk � 1; £ 2 T g �

max
l;q

min
£

fV.ª; £; x j q; l/ j klk � 1; kqk � 1; £ 2 T g D V].ª; t0; x/
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which in terms of sets yields

X .ª; t0; X 0/ D
[

£

\
l;q

fE£.x
.j /.ª/; X

.j /
C .ª j q; l// j klk � 1; kqk � 1; £ 2 T g 	

\
l;q

[
£

fE£.x
.j /.ª/; X

.j /
C .ª j q; l// j klk � 1; kqk � 1; £ 2 T g D XC.ª; t0; X 0/

Set XC.ª; t0; X 0/ is therefore an external approximation of the nonconvex exact
set X .ª; t0; X 0/ which captures the nonconvexity of the exact one.

Example 11.1 (Replacing Example 5.8).

Px1 D x2 C r cos ¨�t; Px2 D u C r sin ¨�t; t 2 Œ0; ª�; juj � 1;

we shall look for the reach set

X .‚; 0; X 0/ D X .ª; 0; 0; X 0/ D
[

t

fX .t; 0; X 0/ j t 2 ‚g; ‚ D Œ0; ª�;

where

X .t; 0; X 0/ D
\

fE.x.c/.t/; XC.t j l// j hl; li � 1g:

is an intersection of tight ellipsoids produced using (11.19), with x.1/ D x.c/; X
.1/
C D

XC.t j l/.
Denote Vl.t; x/ D fx W hx � x.c/; XC.t j l/.x � x.c//i � 1g. Then, due to

relations

V.ª; 0; x/ D min
t

max
l

fVl.t; x/ j hl; li � 1; t 2 Œ0; ª�g �

� max
l

min
t

fVl.t; x/ j hl; li � 1; t 2 Œ0; ª�g D V].ª; 0; x/;

we may find the exact nonconvex reachability set or its external approximation (also
nonconvex), namely,

fx W V.ª; 0; x/ � 1g D X .ª; 0; X .0// 	 XC.ª; 0; X .0// D fx W V].ª; 0; x/ � 1g:

Figure 11.1 demonstrates the intersection of nonconvex level sets over all fl W
hl; li � 1g; which coincides with the external approximation XC.ª; 0; X .0//.
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Fig. 11.1 Nonconvex level sets of function minfVl .t; x/ j t 2 ‚g for fixed values of l and their
intersection

Another Type of Enabling Zone: A Gap

Consider a family of parallel hyperplanes Hj .”/ D fx W hc.j /; xi D ”g parametrized
by variable ”. The enabling zone will now be Dj —the domain (a “gap”) between
hyperplanes Hj .”.1// and Hj .”.2//, so that Dj D Dj .”.1/; ”.2// D fx 2 Hj .”/j
” 2 Œ”.1/; ”.2/�g.

We shall discuss one crossing of the gap Dj . Then at time t , before reaching Dj ,
we have

maxfhc.j /; xi j x 2 X Œt �g D ”C.t/ < ”.1/;

and the first instant of time when X Œt �
T

Dj 6D ; is £0
j —the smallest positive root

of equation ”.1/ � ”C.t/ D 0:

Now, with t � £0 there may be either no resets or a reset to system j while
passing Dj . If there are no resets, then introducing the function

minfhc.j /; xi j x 2 X Œt �g D ”�.t/;

we observe that condition X Œt �
T

Dj 6D ; will hold as long as ”C.t/ � ”.1/ and
”�.t/ � ”.2/, and the point of departure from Dj will be the smallest root £00

j � £0
j

of equation ”.2/ � ”�.t/ D 0.
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If there is a reset from X Œt � 0� to X �Œt �, it may happen at any time £ � £0
j ,

with respective Hj D Hj .”/; ” D ”.£/; provided ”.£/ � ”.2/. Hence, denoting
X Œ£� \ Hj .”.£// D Zj .”.£//; we further have the union

X �Œt � D
[

fX �.t I s; Zj .”.s///js 2 Œ£; t �g: (11.28)

Then, for every ”.t/ 2 .”.1/; ”.2/�; we introduce

minfhc.j /; xi j x 2 X �Œt �g D ”�
r .t/;

and the time of departure of X �Œt � from Dj will be the smallest root £00
jr of equation

”.2/ � ”�
r .t/ D 0.

Condition (11.17) ensures that the points £0
j ; £00

jr are unique. What follows is now
similar to what was written above for guards taken as hyperplanes.

We discuss an example.

Exercise 11.2.2. A branching reachability tube.

Consider the system

Px.i/ D A.i/x.i/ C B.i/u.i/ C f .i/.t/; i D 1; 2; (11.29)

with parameters

A.1/ D
�

0 �1

1 0

�
; A.2/ D

�
0 2

�2 0

�
; B.1/ D B.2/ D I;

f 1/.t/ �
�

7

�2

�
; f .2/.t/ �

�
0

20

�
;

p.1/ D p.2/ D 0; P .1/ D P .2/ D 0:005I:

The motion starts from position x.0/ 2 E.x0; X0/ ,

X0 D
�

10 0

0 0

�
; x0 D

�
1

1

�
: (11.30)

and moves throughout interval t 2 Œ0; ª� due to system i D 1.
The reset to system i D 2 is possible upon intersecting with the “gap”

D D D.c; ”/ D fx W hc; xi D ”; ” 2 Œ”.1/; ”.2/� W

c D 1p
2

.1; 1/0; ”.1/ D 3; ”.2/ D 5:
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Fig. 11.2 Reachability set for each branch

Fig. 11.3 Reachability tubes for both branches (left) and the overall branching reachability set
(right)

Indicated in Figs. 11.2 and 11.3 are external approximations for the two branches of
the reachability set after crossing the gap D at time t D 3. Here for i D 1 there is
no reset and the reachability set is a convex set X Œt �, while for i D 2 there is a reset
from i D 1 to i D 2 and X �Œt � is a nonconvex union of convex sets of type (11.28).
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11.3 Verification of Hybrid Systems

We apply the results of Sect. 11.1 to hybrid systems.

11.3.1 Verification: Problems and Solutions

Suppose M D E.m; M/; M D M 0 > 0; is the given target and M \Hi D ;; 8i 2
f1; : : : ; kg.

Problem 11.3.1. Given starting position ft0; X 0; Œ1C�g; target set M and time t >

t0; verify whether there exists a branch I .k/ D Œ1C; i
.s1/
1 ; : : : ; i

.sk/

k � for which one of
the following conditions is true (these cover all possible situations)

(i) X .t; t0; X 0; I .k// \ M D ;;

(ii) X .t; t0; X 0; I .k// \ M 6D ;;

(iii) X .t; t0; X 0; I .k// 	 M :

Let us investigate the solution of this problem for a given branch I .j / D Œ1C;

i
.s1/
1 ; : : : ; i

.sj /

j �, assuming k D j; t > £00
j .

Theorem 11.3.1. The following conditions are true.

(A) Suppose set X .j /Œt � D X .t; t0; X 0; I .j // D SfX .j /Œt; s� j s 2 Tj D Œ£0; £00�g is
convex.

Then case (i) of Problem 11.3.1 holds if and only if

maxf�¡.�l j M / � ¡.l j X .j /Œt �/ j hl; li � 1g D • > 0: (11.31)

Case (ii) holds if and only if

maxf�¡.�l j M / � ¡.l j X .j /Œt �/ j hl; li � 1g � 0: (11.32)

Case (iii) holds if and only if

minf¡.l j M / � ¡.l j X .j /Œt �/ j hl; li � 1g � 0: (11.33)

(B) Suppose the sets X .j /Œt; s� are convex, but their union set X .j /Œt � D
[fX .j /Œt; s� j s 2 Tj D Œ£0; £00�g is not convex. Then case (i) of Problem 11.3.1
holds if and only if

min
s

max
l

f�¡.�l j M / � ¡.l j X .j /Œt; s�/ j hl; li � 1; s 2 Tj g D • > 0:

(11.34)
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Case .i i/ holds if and only if

min
s

max
l

f�¡.�l j M /�¡.l j X .j /Œt; s�/ j hl; li � 1; s 2 Tj g � 0: (11.35)

Case (iii) holds if and only if

min
s

min
l

f¡.l j M / � ¡.l j X .j /Œt; s�/ j hl; li � 1; s 2 Tj g � 0: (11.36)

If the same properties have to be verified for nonconvex sets of type

X Œª0; ª00� D
[

fX Œt � j t 2 Œª0; ª00�g;

reachable within interval Œª0; ª00�; ª00 � £00; then one has to repeat operations similar
to (11.34)–(11.36), but for X Œt � taken within this interval.

If there is more than one crossing, then each new crossing adds a new parameter
s D sk; with range within related interval of type Œ£0

k; £00
k�. So, after j such active

intervals, it would be necessary to compute related unions of nonconvex sets involv-
ing optimization of parametrized value functions over parameters sk; k D 1; : : : ; j .
The realization of such computations brings us to ellipsoidal approximations.

11.3.2 Ellipsoidal Methods for Verification

We now introduce some ellipsoidal procedures for problems of the previous
subsubsection.

Suppose X .k/Œt; s� D TfEŒt; s; l � hl; li � 1g; where EŒt; s; l � is an ellipsoidal
function defined for all fs 2 Œ£0; £00� D Tkg and all fl W hl; li � 1g, continuous in all
the variables. and such that for all q we have

¡

�
q j

\
fEŒt; s; l � j hl; li � 1g

�
D min

l
f¡.q j EŒt; s; l �/ j hl; li � 1g:

Due to (11.20), (11.21) this property is true for system (11.19).
Denote X .k/Œt � D S

s X .k/Œt; s�; � D E.m; M/.

Lemma 11.3.1. The next conditions are true.

(i) For a given s 2 Tk condition X .k/Œt; s� \ E.m; M/ D ; holds if and only if

d1Œt; s� D max
l

max
q

f�¡.�q j EŒt; s; l �/�¡.q j E.m; M// j hq; qi � 1g � • > 0
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and X .k/Œt � \ E.m; M/ D ; if and only if

d1Œt � D min
s

fd1Œt; s� j s 2 T g � • > 0:

(ii) For a given s 2 Tk condition X .k/Œt; s� \ E.m; M/ 6D ; holds if and only if

d2Œt; s� D max
l

max
q

f�¡.�q j EŒt; s; l �/ � ¡.q j E.m; M// j hq; qi � 1g � 0;

and X .k/Œt � \ E.m; M/ 6D ; if and only if

d2Œt � D min
s

fd1Œt; s� j s 2 T g � 0:

(iii) For a given s 2 Tk condition X .k/Œt; s� 	 E.m; M/ holds if and only if

d3Œt; s� D min
q

max
l

f¡.q j E.m; M// � ¡.�q j EŒt; s; l �/ j hq; qi � 1g � 0;

and X .k/Œt � 	 E.m; M/ if and only if

d3Œt � D min
s

fd1Œt; s� j s 2 T g � 0:

Relations of this lemma allow us to compute the union X .k/Œt � in all the considered
cases.

If it is further required to compute

[
fX .ª; t0; X 0/ j ª 2 Œª0; ª00�g; ª � £00;

then the previous schemes have to be applied once more, involving one more
parametrized array of ellipsoids.

Such overall procedures should be repeated after each active crossing, designing
a branching process, whose calculation would involve effective parallelization.
Computing sequential arrays of ellipsoids that correspond to related directions q; l;

through procedures of such parallelization and increasing the number of directions,
one may approach the exact solutions with any preassigned degree of accuracy.

11.4 Impulse Controls in Hybrid System Models

In Sect. 11.2 we considered resets occurring only in the system model. We now
indicate how to treat resets in both system model and the state space variables. This
leads to the use of impulse controls for describing the resets.
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11.4.1 Hybrid Systems with Resets in Both Model
and System States

We now discuss situations when the hybrid system involves resets both in the system
number (marked as Rs.j / ) and in the phase coordinates (marked as Rcrd .i/). Upper
index s D � with no crossing, s D C with reset in system number and s D � with
reset in phase coordinates.

Returning to (11.19), consider hybrid system

Px 2 A.i/.t/x C B.i/.t/u.i/ C C .i/.t/v.i/.t/; i D 1; : : : ; k; (11.37)

with resets of system model at hyperplanes at

Hj D fx j hc.j /; xi � ”j D 0g; c.j / 2 Rn; ”j 2 R; j D 1; : : : ; m:

Suppose an isolated motion, starting at ft0; X 0g, developed due to system i1; under
fixed control u D u.t/; reaches the first hyperplane Hj1 at time £.j1/. Then the
following events may occur:

– at time £.j1/ there is a system reset for i1; so it switches to system i2 D Rs.j1/i1;

due to transformation Rs.j1/ from I .k/ D fi D 1; : : : ; kg to I .k/; and develops
further due to i2.

– at the same time £.j1/ there is a reset of the phase coordinates due to
transformation x.£.j1/ C 0/ D Rcrd .j1/x.£.j1/ � 0/ from Rn ! Rn. If there
are no resets, then the respective transformations are identities.

So, if at instant of intersecting Hj with both types of resets active, the position
(state) of the system will change from ft; x; Œi1�g; t D £.j1/ � 0;—before
crossing, to another after crossing, which is f£.j1/C0; x.£.j1/C1/; Œi1; i2�g; where
x.£.j1/ C 0/ D Rcrd .j1/x, i2 D Rs.j1/i1, i2 D i s

2 , s D fC�g; then the system
will further develop due to i2, from boundary condition f£.j1/; x.£.j1/ C 0/g.
After yet one more crossing, with only one active reset Rcrd at £.j2/; the state
at t 2 .£.j2/; £.j3 � 0// will be ft; x; Œi1; i2; i3�g; with i3 D i s

3 ; s D f��g. The
on-line state is therefore composed of a part ft; xg without memory, responsible for
the continuous component of the hybrid system and a part Œi1; i2; i3� with memory,
responsible for the discrete part.3

Remark 11.4.1. The difference between the systems considered here and standard
switching systems is that here the switchings depend on spatial rather than temporal
parameters and also that there may be instantaneous change of coordinates which
leads to discontinuity of trajectories in the phase space.

Before introducing some general schemes we begin with illustrative examples.

3In more complicated problems, for example, with complex constraints on the number of
switchings or other outputs of resets, this memorized part may be logically controlled and its
knowledge may be important. Such components are also important in the design of feedback
controls and computation of backward reach sets for hybrid systems. Situations mentioned in this
footnote mostly lie beyond the scope of this book.



11.4 Impulse Controls in Hybrid System Models 421

11.4.2 Two Simple Examples

We give some examples of hybrid systems with reset of their phase coordinates.
In order to formalize such situations we will introduce additional system inputs in
the form of exogenous impulse controls. We begin with two simple examples.

Example 11.2. The two-dimensional bouncing ball.

Consider a small freely falling heavy ball which bounces when striking the floor
(a plane, inclined to horizontal level), due to an elastic impact. It then moves further
along a trajectory which depends on the inclination angle of the floor at each new
bounce. Such angles, which act as controls, should be selected so that the ball ends
up in a fixed hole on the horizontal axis—the target. The process of bouncing may
cause some small losses of energy.

Following is an analytical, two-dimensional description of such bouncing
motion. A more complicated three-dimensional model of a bouncing motion is
indicated later.

The system equations are

Px1 D y1; Py1 D v1.x; y; ®/•.x2/;

Px2 D y2; Py2 D �kv2.x; y; ®/•.x2/ � g; 0 < k < 1;

where ® D ®.x; y/ are the values of the discrete control inputs which are presented
as inclination angles of the floor to horizontal line x2 D 0 at impact times ti . Such
inputs are modeled as delta functions of type v•.x2.ti //.

The last equations are symbolic. Another representation of the same system,
according to Sect. 9.3.1 is

dx1 D y1dt; dy1 D v1.x; y; ®/dU 0.x2; 0/;

dx2 D y2dt; dy2 D �kv2.x; y; ®/dU 0.x2; 0/ � gdt; 0 < k < 1;

where function U 0.x; h/ D 1h.x/ (with scalar variable x) is a unit jump, namely,
1h.x/ D 0; if x < h and 1h.x/ D 1; if x � h.

The solution of the last equations may be interpreted as a solution of the
next vector-valued integral equation with integral taken in the Lebesgue–Stiltjes
sense [234].

x1.t/ D x0
1 C

Z t

t0

y1.s/ds; y1.t/ D y0
1 C

Z t

t0

v1.x.t/; y.t/; ®.x.t/; y.t///dU 0.x2.t/; 0/;

x2.t/ D x0
2 C

Z t

t0

y2.s/ds; y2.t/ D y0
2 � k

Z t

t0

v2.x.t/; y.t/; ®.x.t/; y.t///dU 0.x2.t/; 0/:

(11.38)
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Fig. 11.4 The trajectory of a bouncing ball

Here, Fig. 11.4 shows the bouncing trajectory where at times of impact, with
x2.ti / D 0; the vertical velocity y2 of the ball instantaneously changes its sign while
velocities y1; y2 change their values. This leads to an instantaneous jump (a reset)
of the values of vector f Px1.t/; Px2.t/g as soon as x2.t/ D 0. The inclination angle ®

of the floor at x2.ti / D 0 therefore depends on the state space position of the system
and generates a feedback impulse control, thus reflecting the discrete component of
the hybrid process. The reset of variables f Px1.t/ D y1.t/; Px2.t/ D y2.t/g is due to
virtual •-valued controls of intensities v1.x; y; ®/ and �kv2.x; y; ®/.

Example 11.3. One inflow for two water tanks.

Another is the well-known simple example of controlling two water tanks
through one inflow [104]. The feedback dynamics of this system is now formalized
using impulsive inputs.

This system is a model with two “motions”: (q1), (q2), with alternating resets
from one to the other. Here

.q1/ W Px1.t/ D w � v1; Px2 D �v2; x2 � V2;

.q2/ W Px1.t/ D �v1; Px2 D w � v2; x1 � V1:

These equations describe a water supply at speed w through inflow from only
one pipe directed alternatingly to two water tanks from which water leaves with
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respective speeds v1 and v2. The water levels to be maintained at the tanks are V1

and V2. At each time t the pipe fills one of the tanks, then switching to the other
according to the following feedback rule.

Suppose at first the water is filling tank q2 with x1 > V1; x2 < V2. Then, when
x1 decreases to level V1 the pipe switches from q2 to q1 (at that time it should be at
x2 > V2). Then later, after x2 had decreased to V2, the pipe is reversed again to q2.
The speeds and the water levels have to be coordinated to ensure sustainability of
the required water levels V1; V2.

Exercise 11.4.1. Indicate the range of speeds w; v1; v2 and water levels V1; V2 when
these levels are sustainable.

The two systems may be combined into one, switching from one to the other through
two impulsive control inputs generated due to feedback control signals. Denoting
the right-hand sides of systems (q1) and (q2) by F1.x/; F2.x/ and introducing a
third variable — that has only two possible values ˙1; consider the following system
in symbolic form

8<
:

Px D F1.x/

�
1Csign—

2

�
C F2.x/

�
1�sign—

2

�

P— D 2•.x1 � V1 C 0/ � 2•.x2 � V2 C 0/

;

or as 8<
:

dx D
�

F1.x/

�
1Csign—

2

�
C F2.x/

�
1�sign—

2

��
dt

d— D 2dU 0.x1 � V1; 0/ � 2dU 0.x2 � V2; 0/

:

The solution of this equation is defined through integral equations taken in the sense
of the Lebesgue–Stiltjes integral and similar to the type (11.37) (Fig. 11.5).

11.4.3 Impulse Controls in Hybrid Systems

We now indicate a scheme involving impulse controls to formalize the mathematical
model of hybrid systems.

Consider equations

Px D A.t; —/x C B.t; —/u C I u.imp/; (11.39)

P— D u—; (11.40)

x 2 Rn; — 2 f1; : : : ; kg:
Here u D u.t; x; —/ is the on-line p-dimensional “ordinary” control in the class of
bounded functions, the one responsible for the continuous component of system
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Fig. 11.5 One inflow for two water tanks

trajectory x.t/; the n-dimensional vector u.imp/ D .u.imp/
1 ; : : : ; u.imp/

n /0 is the
impulse control responsible for reset of the phase coordinates and has the form

u.imp/ D u.imp/.t; x; —/I u.imp/
j D u.imp/

j .t; x; —/ D ’.t; x; —.t � 0//•.f .x; —//:

The scalar u— controls the number — of system Eq. (11.39), and is the input in
Eq. (11.40) for finding the integer — 2 f1; : : : ; kg and has the form

u— D u—.x; —/ D “.x; —.t � 0//•.fd .x; —.t � 0///:

The piecewise-constant, integer-valued function —.t/ is responsible for switching the
system at crossing time £ from —.£�0/ D i to —.£C0/ D j . This is realized through
Eq. (11.40) with “.x; i/ D j � i .

The resets occur at instants of crossing surfaces f .x; —/ D 0 for phase
coordinates and f—.x; —/ D 0 for the number — D i of Eq. (11.39). In system (11.37)
these surfaces are presented as hyperplanes H.j /.

Remark 11.4.2. The application of dynamic programming techniques to hybrid
systems was discussed in [23, 36, 170].
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11.4.4 More Complicated Example: The Three-Dimensional
Bouncing Ball 4

Consider a three-dimensional Newtonian motion of a heavy ball under gravity “g.”
Starting with a free fall, the ball bounces back when reaching a plane H inclined
to the horizontal level. The phase state of the ball is defined by a six-dimensional
vector x D .x1; : : : ; x6/0 2 R6, where .x1; x2; x3/0 are coordinates of its center
in R3 (x3 stands for its vertical position), and .x4; x5; x6/ are coordinates of the
respective velocity vector. At each time t , with no force other than gravity, it satisfies
Eq. (11.37), where, with Oi�j standing for a zero matrix of dimensions i � j; we
have

A.t/ D
�
O3�3 I3�3

O3�0 O3�3

�
, B.t/ D 0 , C.t/f .t/ D f .t/ D

�
O5�1

�g

�
: (11.41)

This system is treated within

t 2 R; x 2 	x D f.x1; : : : ; x6/ W xi 2 R; x3 � 0g:
If it is in horizontal position, plane H may rotate around axes l1 and l2, that
may emanate from any point along directions of vectors e1 D .1; 0; 0/0 and
e2 D .0; 1; 0/0. At each time it may be rotated around only one of these axes: to angle
®1 2 Œ�’1; ’1� (’1 2 .0; �=2/) for l1, and angle ®2 2 Œ�’2; ’2� (’2 2 .0; �=2/) for
l2. Such rotations incline the plane to a new position. So, when the ball now reaches
H , it bounces back causing a reset of the system trajectory in phase space R6,
demonstrating the hybrid nature of the process. At an instant of reset H may had
been turned around one of the axes l1 and l2 that emanate from the point of impact.

Let the state of the ball be x� just before the reset and xC right after that.
Introduce the additional notations

C1.®/ D
0
@ 1 0 0

0 cos.®/ sin.®/

0 � sin.®/ cos.®/

1
A , C2.®/ D

0
@ cos.®/ 0 � sin.®/

0 1 0

sin.®/ 0 cos.®/

1
A :

If by time of reset the plane H was turned around axis l1 to angle ®1; and also
around l2 to angle ®2; then vectors x� and xC are linked by the next relation

xC D Cx�, where C D C.®1; ®2/ D
�

I3�3 O3�3

O3�3 M

�
,

M D I � .1 C ”/C1.®1/C2.®2/E3;3C 0
2.®2/C 0

1.®1/, E3;3 D
0
@0 0 0

0 0 0

0 0 1

1
A .

4This example was worked out by P.A. Tochilin.
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Here ” 2 Œ0; 1� is the “recovery” coefficient: with ” D 1 we have the model for an
absolutely elastic impact, and with ” D 0 for a nonelastic.

Such a model may now be also formalized involving •-functions.

Px D Ax.t/ C f C .C.®1; ®2/ � I /x•.x3/: (11.42)

With ®2 D 0 (when plane H may rotate only around axis l1), then (11.42), taken in
coordinate form, is

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

Px1 D x4

Px2 D x5

Px3 D x6

Px4 D 0

x5 D �.1 C ”/.sin2.®1/x5 C sin.®1/ cos.®1/x6/•.x3/

x6 D �.1 C ”/.sin.®1/ cos.®1/x5 C cos2.®1/x6/•.x3/ � g

;

and with ®1 D 0 (when H may rotate only around l2 ), Eq. (11.42) in detail is:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

Px1 D x4

Px2 D x5

Px3 D x6

Px4 D �.1 C ”/.sin2.®1/x4 � sin.®1/ cos.®1/x6/•.x3/

x5 D 0

x6 D �.1 C ”/.� sin.®1/ cos.®1/x4 C cos2.®1/x6/•.x3/ � g

:

At each time t the on-line controls ®1; ®2 are determined by the running position
x.t/ of the system.

On horizontal plane H D H0 D fx W x3 D 0g consider a hole (target set)

M D fx 2 R3 W .x1 � m1/2 C .x2 � m2/2 � r2; x3 D 0g:

Also specify a starting position x0 D x.t0/ D .x0
1 ; x0

2 ; x0
3 ; 0; 0; 0/0, where x0

3 > 0.
The problem will be to direct the trajectory of the bouncing ball, by choice

of angles ®1; ®2 (the exogenous controls) to the target set M . Here the system
parameters and the matrix C are independent of time.

Considered are the following optimization problems.

Problem 11.4.1. Find minimal time t1 � t0, for which there exists a control
®1.�/; ®2.�/, that ensures inclusion x.t1I t0; x0/j®1;®2 2 M � R3 with any final
velocity.

Problem 11.4.2. Given ft0; x0g; find the minimal number k� of bounces (resets)
k 2 ZC (the set of positive integers), such that there exist a time interval Œt0; t1�; and
a control ®1.�/; ®2.�/ for which the inclusion xŒt1� D x.t1I t0; x0/j®1;®2 2 M �R3 is
achieved with number of bounces k � k�.
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Consider the following value functions

V .1/.t1; x/ D min
®1.�/;®2.�/

min
t2Œt0;t1�

�
Œ.x1.t I t0; x/j®1;®2 �m1/2C.x2.t I t0; x/j®1;®2 �m2/2�r2�C

CI .x3.t I t0; x/j®1;®2 j 0/

�
;

V .2/.x; k/ D min
t�t0

min
®1.�/;®2.�/

�
Œ.x1.t I t0; x/j®1;®2 �m1/2C.x2.t I t0; x/j®1;®2 �m2/2�r2�C D

CI .x3.t I t0; x/j®1;®2 j 0/ C ™.x.�I t0; x/j®1;®2 ; t; k/

�
:

Here Œh.t; x/�C D 0 if h.t; x/ � 0; and Œh.t; x/�C D h.t; x/ if h.t; x/ > 0;
function ™.x.�I t0; x/j®1;®2 ; t; k/ D 0 within interval £ 2 Œt0; t �, if the number of
bounces does not exceed k, otherwise it is C1.5

To compute solutions of Problems 11.4.1 and 11.4.2, we may use the following
facts.

Lemma 11.4.1. (1) With x0 given, the solution to Problem 11.4.1—the minimal
time t1 D t�

1 —is:

t�
1 D arg minft1 � t0 W V .1/.t1; x0/ � 0g;

achieved through some control sequence ®1.�/; ®2.�/.
(2) With x0 given, the solution k D k� for which there exists a time interval Œt0; t1�

together with a control sequence ®1.�/; ®2.�/; that solve Problem 11.4.2, is:

k� D arg minfk 2 ZC W V .2/.x0; k/ � 0g:

For computing V .1/.t1; x/; V .2/.x; k/, there exist related HJB equations with appro-
priate boundary conditions (see [171]).

Exercise 11.4.2. Indicate the HJB equations with boundary conditions for comput-
ing value functions V .1/.t1; x/; V .2/.x; k/.

Remark 11.4.3. Value functions V .1/.t1; x/; V .2/.x; k/ may be also computed
through methods of nonlinear analysis and ellipsoidal techniques, along the lines of
Chaps. 2 and 3.

With V .1/.t1; x/; V .2/.x; k/ computed, one may specify the solutions to Prob-
lems 11.4.1 and 11.4.2.

5As before I .x j D/ D 0, if x 2 D and C1 otherwise.
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Denote t�
1 .x/ D minft1 � t0 W V .1/.t1:; x/ � 0g � 0 and at collision time

t1 � 0 (just before the bounce) consider state ft1 � 0; xg; x D .x1; : : : ; x6/; so that
x3.t/ D 0; x6.t � 0/ < 0.

Suppose .x1.t1 � 0/ � m1/2 C .x2.t1 � 0/ � m2/2 � r2 > 0; x3 D 0; but
V .1/.t1 � 0; x/ � 0. Then, obviously t1 < t�

1 ; and the control solution at this point
will be of type

.®�
1 .x/; ®�

2 .x// W V .1/.t�
1 .x/; C.®�

1 ; ®�
2 /x/ � V .1/.t�

1 .x/; x/;

until t1 D t�
1 ; .x1.t1 � 0/ � m1/2 C .x2.t1 � 0/ � m2/2 � r2 D 0; x3 D 0.

Similarly, denote k�.x/ D minfk 2 ZC W V .2/.x; k/ � 0g; and suppose at
collision time t1 we have .x1.t1 � 0/ � m1/2 C .x2.t1 � 0/ � m2/2 � r2 > 0; x3 D 0.
Then the number of realized bounces will be k < k� and the control solution at this
point will be of type

.®�
1 .x/; ®�

2 .x// W V .2/.C.®�
1 ; ®�

2 /x; k/ � V .2/.x; k�.x//;

until k D k� � 1.
Shown in Fig. 11.6 is the trajectory of the 3-d bouncing ball (a hybrid system)

which reaches the target set with minimum resets (bounces). The problem parame-
ters are: ’1 D 0:5, ’2 D 0:5, m1 D 1, m1 D 2, r2 D 0:2, ” D 0:8, and the starting
position is x0 D .�4; �1; 4; 0; 0; 0/0.

Shown in Fig. 11.7 is the time-optimal target-oriented trajectory of the bouncing
ball with parameters ’1 D 1, ’2 D 0:4, m1 D 1, m2 D 2, r2 D 0:2, ” D 0:9 and
starting position x0 D .�2; 3; 4; 0; 0; 0/0.

Fig. 11.6 Reaching target hole with minimal bounces
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Fig. 11.7 Reaching target hole in minimal time
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